skip to main content


Title: Comparative Study of the Effect of Numerical Majority and Non-majority Status on the Intersection of Professional and Cultural Identity of African American Engineering Students
Low enrollment, retention, and graduation rates of African American engineering students in the United States are a cause for concern [1]. Consequently, over the last decade there has been an upsurge of research identifying factors that have contributed to the problems encountered by African American students in higher education institutions in general, and in STEM fields in particular [2, 3]. The key factors identified as contributing to the attrition of minority African American students include perceptions of racism on campus, internalization of stereotypes, feelings of alienation and rejection, and inadequate support systems [4, 5]. In this context, considerations of institutional demographic characteristics, including the ethnic makeup of the student body is essential. Studies demonstrate that African American students at Historically Black Colleges and Universities (HBCUs) experience lower levels of isolation and overt racism, and higher levels of retention compared to African American students in Predominantly White Institutions (PWIs) [6, 7]. While some studies suggest that African American students experience lower levels of stereotype threat in HBCUs [8, 9], other studies indicate that there is little significant difference between students attending PWIs and HBCUs in their perceptions of stereotype threat. Based on qualitative and quantitative data from a national sample of engineering students, Brown, Morning, and Watkins report that students enrolled in HBCUs had more favorable perceptions of their college experience and that the higher graduation rate of African American students in HBCUs compared to their PWI counterparts could be attributed to lower perceptions of racism and discrimination [10]. It may be that the levels of stereotype threat experienced in the two types of institutions are different [11]. Based on the literature reviewed, the purpose of this study is to examine whether African American engineering students’ numerical majority status in HBCUs enhances the compatibility between their racial and professional identities and facilitates their integration; while their numerical minority status in PWIs diminishes the compatibility of the two social identities and stymies their integration. We examine this issue within the Social Identity and the Identity-focused Cultural Ecological Perspective theories. Before we turn to the two theoretical frameworks we describe the multiple context-dependent representations of majority-minority status with particular focus on African American college students in the United States.  more » « less
Award ID(s):
1640553
NSF-PAR ID:
10078844
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2018 CoNECD - The Collaborative Network for Engineering and Computing Diversity Conference
Page Range / eLocation ID:
22681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: Underrepresented minorities in engineering regularly experience subtle behaviors or statements that denigrate them on account of their race, ethnicity, gender, or other identity. Engineering students cite these behaviors, known as microaggressions, as reasons for having considered changing majors or leaving college altogether. Despite the recent research trend to foster a more racially, ethnically, and genderinclusive engineering education and profession, previous research does not examine microaggressions in engineering using an intersectional lens. Without an intersectional perspective, intragroup diversity is overlooked, increasing the potential to reinforce broad racial and gender stereotypes. To measure the effects of microaggressions among engineering undergraduate students, the current study used an intersectional approach and collected data from a predominantly white institution (PWI) and from a historically black colleges and universities (HBCUs). The authors conducted individual semistructured interviews to examine the effects of microaggressions among 42 engineering undergraduate students, who can be categorized into seven intersectional identities—White women, African American men, African American women, Asian men, Asian women, Latino men, and Latina women. Results showed five macroeffects and two microeffects—(1) reduced self-belief (reduced self-efficacy and reduced self-esteem), (2) otherness, (3) racial/gender isolation, (4) stereotype threat, and (5) and empowered sense of self. Also, in this work, we make comparisons across intersectional identities. The data provide support for further study of microaggressions and their effects on intersectional identities. This research extends the intersectional approach to focus on engineering departments and colleges and provides information to engineering departments and university administrators concerning the experiences of minority undergraduates and offers academic leaders further information regarding issues surrounding minority student retention and persistence. DOI: 10.1061/(ASCE)ME.1943-5479.0000889. © 2021 American Society of Civil Engineers. 
    more » « less
  2. This interdisciplinary, inter-institutional research initiation project is motivated by the need to develop practical strategies for broadening the participation of African American students in engineering. The central objective of the project is to conduct a comparative study of the factors affecting the success and pathways to engineering careers of African American students at a Predominantly White Institution (PWI), the University of Toledo, and a Historically Black University (Alabama Agricultural and Mechanical University). Through this research we hope to gain insight into the factors affecting the social and academic well-being of students at PWIs and HBCUs from a psychological and anthropological perspective. For students from underrepresented groups in STEM at both HBCUs and PWIs it is generally recognized that social capital in the form of familial, peer and mentor support is critical to persistence in their major field of study. However, the role that embedded networks within student groups in general, and minority engineering affinity groups in particular, play in engineering students’ identity formation and academic success is not well understood. It is also not clear how other factors including institutional support and the attitudes and beliefs of faculty and staff toward underrepresented minority students affect the ability of these students to integrate into the social and academic systems at their institutions and how these factors influence the formation and development of their identities as engineers. Here we report on the role of membership in organizations for underrepresented minority engineering students such as the National Society of Black Engineers (NSBE) in contributing to the interlinking of personal and professional identities, and to the career pathways of African American students enrolled in PWI and HBCU, respectively. 
    more » « less
  3. Thought must be given to how individuals from underrepresented groups (URGs) conceptualize their academic engineering identities. Black male students have been shown to face a great challenge in integrating their racial identification into their self-concept. This “balancing act” involves the navigation and negotiation between multiple social spaces. The establishment of a positive identity associated with engineering is critical to how underrepresented students establish their sense of agency and overall “fit” within the institutional and/or professional setting. Yet, because of low numbers in participant populations, many studies fail to disaggregate the experiences of individuals from URGs. Further, if makerspaces represent an avenue of hope for fostering a generation of makers and innovative thinkers prepared to address the needs and challenges of our society, it is quite plausible that without careful attention we could be building another exclusionary system through makerspaces, grounded in the acceptance of Caucasian, male experiences and perceptions as the status quo. As making could potentially impact academic progression, through early exposure and opportunities to develop confidence through building, design, iteration and community, it is critical that we understand how all students, especially those from underrepresented groups, come to affiliate with, become alienated from and/or negotiate the cultural norms within these maker communities. To achieve this, it is necessary to explore the complexities of underrepresented students’ identity development. This study investigated the experiences of Black male engineering students that have also engaged in university-affiliated makerspaces as makers. Seven Black male students from a range of institution types, including Predominantly White Institutions (PWIs), Historically Black Colleges and Universities (HBCUs) and Asian American Native American Pacific Islander Institutions (AANAPI), participated in narrative interviews to ascertain stories of their personal growth and identity development. Engaging in makerspaces was found to promote agency and engineering identity for Black male undergraduates; however, makerspaces located at PWIs were found to reflect the heteronormative culture of engineering in a way that challenged smooth navigation in and through these spaces for Black men. 
    more » « less
  4. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  5. The Smart City Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) (SCR2) Mega-Site program, which is supported by the National Science Foundation (NSF) (#1849454), was formed in 2018 to address the low participation and graduation rates of post-secondary students belonging to underrepresented minority groups in the engineering field. The participating schools in the program are all minority serving and members of a consortium consisting of 14 Historically Black Colleges and Universities (HBCUs) and 1 Hispanic Serving Institution (HSI), where Morgan State University (MSU) serves as the lead institution. The program targets lower division underperforming REU students who are less likely to have the opportunity to participate in research as undergraduates. Participation in this type of experience has been demonstrated to be transformative and to have the potential to increase retention and graduation rates at these institutions. RET participants are recruited from local community colleges and high schools that serve as feeder schools to the consortium institutions. These teachers are responsible for preparing students who could potentially be interesting in pursuing a college major in engineering by exposing them to hands-on engineering design practices. Over the last two years of the program’s existence, 61 students and 24 teachers have successfully participated. As with most 2020 summer programs, the SCR2 program was challenged by the novel corona virus (COVID-19) pandemic, which hit the United states during the recruitment period of the project. Consequently, the project leadership team decided to offer the summer program remotely (on-line) rather than bring students to the participating three campuses across which the program is distributed. The planning and execution of the program during a global pandemic has brought key insights into techniques, methods, and technologies for effective cross-site communication, faculty advisor/mentor involvement, participant engagement, and leveraging the strong network that connects the participating schools. Essentially, a multi-site remote only combined REU/RET program is efficacious in increasing participant’s confidence, knowledge and desire to pursue further engineering research experiences. This paper presents these insights along with supporting program evaluation findings. 
    more » « less