skip to main content

Title: Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains

Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967)Am Nat101:233–249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 12471-12476
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerson, B. (Ed.)
    High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species‐rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain‐influenced and lowland Amazonian sister pairs inferred from a 756‐gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain‐influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.
  2. ABSTRACT Comparative phylogenetic studies of adaptation are uncommon in biomechanics and physiology. Such studies require data collection from many species, a challenge when this is experimentally intensive. Moreover, researchers struggle to employ the most biologically appropriate phylogenetic tools for identifying adaptive evolution. Here, we detail an established but greatly underutilized phylogenetic comparative framework – the Ornstein–Uhlenbeck process – that explicitly models long-term adaptation. We discuss challenges in implementing and interpreting the model, and we outline potential solutions. We demonstrate use of the model through studying the evolution of thermal physiology in treefrogs. Frogs of the family Hylidae have twice colonized the temperate zone from the tropics, and such colonization likely involved a fundamental change in physiology due to colder and more seasonal temperatures. However, which traits changed to allow colonization is unclear. We measured cold tolerance and characterized thermal performance curves in jumping for 12 species of treefrogs distributed from the Neotropics to temperate North America. We then conducted phylogenetic comparative analyses to examine how tolerances and performance curves evolved and to test whether that evolution was adaptive. We found that tolerance to low temperatures increased with the transition to the temperate zone. In contrast, jumping well at colder temperaturesmore »was unrelated to biogeography and thus did not adapt during dispersal. Overall, our study shows how comparative phylogenetic methods can be leveraged in biomechanics and physiology to test the evolutionary drivers of variation among species.« less
  3. Tropical mountains hold more biodiversity than their temperate counterparts, and this disparity is often associated with the latitudinal climatic gradient. However, distinguishing the impact of latitude versus the background effects of species history and traits is challenging due to the evolutionary distance between tropical and temperate assemblages. Here, we test whether microevolutionary processes are linked to environmental variation across a sharp latitudinal transition in 21 montane birds of the southern Atlantic Forest in Brazil. We find that effective dispersal within populations in the tropical mountains is lower and genomic differentiation is better predicted by the current environmental complexity of the region than within the subtropical populations. The concordant response of multiple co-occurring populations is consistent with spatial climatic variability as a major process driving population differentiation. Our results provide evidence for how a narrow latitudinal gradient can shape microevolutionary processes and contribute to broader scale biodiversity patterns.
  4. Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global speciesoccurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.
  5. Rapid species turnover in tropical mountains has fascinated biologists for centuries. A popular explanation for this heightened beta diversity is that climatic stability at low latitudes promotes the evolution of narrow thermal tolerance ranges, leading to local adaptation, evolutionary divergence and parapatric speciation along elevational gradients. However, an emerging consensus from research spanning phylogenetics, biogeography and behavioural ecology is that this process rarely, if ever, occurs. Instead, closely related species typically occupy a similar elevational niche, while species with divergent elevational niches tend to be more distantly related. These results suggest populations have responded to past environmental change not by adapting and diverging in place, but instead by shifting their distributions to tightly track climate over time. We argue that tropical species are likely to respond similarly to ongoing and future climate warming, an inference supported by evidence from recent range shifts. In the absence of widespread in situ adaptation to new climate regimes by tropical taxa, conservation planning should prioritize protecting large swaths of habitat to facilitate movement.