skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lump solutions to a (2+1)-dimensional extended KP equation
With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific values of the free parameters involved and finally derive one of the lump solutions of the Kadomtsev–Petviashvili (KP) equations from the lump solutions of the eKP equation.  more » « less
Award ID(s):
1664561
PAR ID:
10079102
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Computers & mathematics with applications. Part A
Volume:
75
Issue:
7
ISSN:
0886-9553
Page Range / eLocation ID:
2414-2419
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on symbolic computations, lump solutions to the Kadomtsev–Petviashvili I (KPI) equation with a self-consistent source (KPIESCS) are constructed by using the Hirota bilinear method and an ansatz technique. In contrast with lower-order lump solutions of the Kadomtsev–Petviashvili (KP) equation, the presented lump solutions to the KPIESCS exhibit more diverse nonlinear phenomena. The method used here is more natural and simpler. 
    more » « less
  2. Abstract We write down and characterize a large class of nonsingular multi-soliton solutions of the defocusing Davey–Stewartson II equation. In particular we study their asymptotics at space infinities as well as their interaction patterns in the xy -plane, and we identify several subclasses of solutions. Many of these solutions describe phenomena of soliton resonance and web structure. We identify a subclass of solutions that is the analogue of the soliton solutions of the Kadomtsev–Petviashvili II equation. In addition to this subclass, however, we show that more general solutions exist, describing phenomena that have no counterpart in the Kadomtsev–Petviashvili equation, including V-shape solutions and soliton reconnection. 
    more » « less
  3. Abstract In the present paper, we are with integrable discretization of a modified Camassa–Holm (mCH) equation with linear dispersion term. The key of the construction is the semidiscrete analog for a set of bilinear equations of the mCH equation. First, we show that these bilinear equations and their determinant solutions either in Gram‐type or Casorati‐type can be reduced from the discrete Kadomtsev–Petviashvili (KP) equation through Miwa transformation. Then, by scrutinizing the reduction process, we obtain a set of semidiscrete bilinear equations and their general soliton solution in Gram‐type or Casorati‐type determinant form. Finally, by defining dependent variables and discrete hodograph transformations, we are able to derive an integrable semidiscrete analog of the mCH equation. It is also shown that the semidiscrete mCH equation converges to the continuous one in the continuum limit. 
    more » « less
  4. Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton. 
    more » « less
  5. Resonant Y-shaped soliton solutions to the Kadomtsev–Petviashvili II (KPII) equation are modelled as shock solutions to an infinite family of modulation conservation laws. The fully two-dimensional soliton modulation equations, valid in the zero dispersion limit of the KPII equation, are demonstrated to reduce to a one-dimensional system. In this same limit, the rapid transition from the larger Y soliton stem to the two smaller legs limits to a travelling discontinuity. This discontinuity is a multivalued, weak solution satisfying modified Rankine–Hugoniot jump conditions for the one-dimensional modulation equations. These results are applied to analytically describe the dynamics of the Mach reflection problem, V-shaped initial conditions that correspond to a soliton incident upon an inward oblique corner. Modulation theory results show excellent agreement with direct KPII numerical simulation. 
    more » « less