skip to main content


Title: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable logarithmic derivative transformations. Applications are made for a few generalized KP and BKP equations.  more » « less
Award ID(s):
1664561
NSF-PAR ID:
10079108
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of differential equations
Volume:
264
Issue:
4
ISSN:
1090-2732
Page Range / eLocation ID:
2633-2659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A (2 + 1)-dimensional generalized Bogoyavlensky-Konopelchenko equation that possesses a Hirota bilinear form is considered. Starting with its Hirota bilinear form, a class of explicit lump solutions is computed through conducting symbolic computations with Maple, and a few plots of a specicpresented lump solution are made to shed light on the characteristics of lumps. The result provides a new example of (2 + 1)-dimensional nonlinear partial differential equations which possess lump solutions. 
    more » « less
  2. Based on the Hirota bilinear form of the (2+1)-dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperbolic-cosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions. 
    more » « less
  3. Based on the Hirota bilinear form of the (2 + 1)-dimensional Ito equation, one class of lump solutions and two classes of interaction solutions between lumps and line solitons are generated through analysis and symbolic computations with Maple. Analyticity is naturally guaranteed for the presented lump and interaction solutions, and the interaction solutions reduce to lumps (or line solitons) while the hyperboliccosine (or the quadratic function) disappears. Three-dimensional plots and contour plots are made for two specific examples of the resulting interaction solutions. 
    more » « less
  4. Based on symbolic computations, lump solutions to the Kadomtsev–Petviashvili I (KPI) equation with a self-consistent source (KPIESCS) are constructed by using the Hirota bilinear method and an ansatz technique. In contrast with lower-order lump solutions of the Kadomtsev–Petviashvili (KP) equation, the presented lump solutions to the KPIESCS exhibit more diverse nonlinear phenomena. The method used here is more natural and simpler. 
    more » « less
  5. The paper aims to explore the existence of diverse lump and interaction solutions to linear partial differential equations in (3+1)-dimensions. The remarkable richness of exact solutions to a class of linear partial differential equations in (3+1)-dimensions will be exhibited through Maple symbolic computations, which yields exact lump, lump-periodic and lump–soliton solutions. The results expand the understanding of lump, freak wave and breather solutions and their interaction solutions in soliton theory. 
    more » « less