skip to main content

Title: The motion of a buoyant vortex filament
We investigate the motion of a thin vortex filament in the presence of buoyancy. The asymptotic model of Moore & Saffman ( Phil. Trans. R. Soc. Lond. A, vol. 272, 1972, pp. 403–429) is extended to take account of buoyancy forces in the force balance on a vortex element. The motion of a buoyant vortex is given by the transverse component of force balance, while the tangential component governs the dynamics of the structure in the core. We show that the local acceleration of axial flow is generated by the external pressure gradient due to gravity. The equations are then solved for vortex rings. An analytic solution for a buoyant vortex ring at a small initial inclination is obtained and asymptotically agrees with the literature.
Authors:
;
Award ID(s):
1706934
Publication Date:
NSF-PAR ID:
10079170
Journal Name:
Journal of Fluid Mechanics
Volume:
857
ISSN:
0022-1120
Sponsoring Org:
National Science Foundation
More Like this
  1. The present work uses a reduced-order model to study the motion of a buoyant vortex ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq and Boussinesq situations using an axisymmetric contour dynamics formulation. The density of the vortex ring differs from that of the ambient fluid, and both densities are constant and conserved. The motion of the ring is calculated by following the boundary of the vortex core, which is also the interface between the two densities. The velocity of the contour comes from a combination of a specific continuous vorticity distribution within its core and a vortex sheet on the core boundary. An evolution equation for the vortex sheet is derived from the Euler equation, which simplifies considerably in the Boussinesq limit. Numerical solutions for the coupled integro-differential equations are obtained. The dynamics of the vortex sheet and the formation of two possible singularities, including singularities in the curvature and the shock-like profile of the vortex sheet strength, are discussed. Three dimensionless groups, the Atwood, Froude and Weber numbers, are introduced to measure the importance of physical effects acting on the motion of a buoyant vortex ring.
  2. The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexities of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k =more »fc=U1 = 0.06-0.18, pitching amplitude of 0 = 75 and heaving amplitude of h0 = 0:6c. The experimental work involves the use of two-component particle image velocimetry (PIV) measurements conducted in a wind tunnel facility at Oregon State University. Velocity fields obtained from the PIV measurements are analyzed qualitatively and quantitatively to provide a description of the dynamics of LEVs and other flow structures that may be present during dynamic stall. Due to the difficulties of accurately measuring aerodynamic forces in highly unsteady flows in wind tunnels, a reduced-order model based on the vortex-impulse theory is proposed for estimating the aerodynamic loadings and power output using flow field data. The reduced-order model is shown to be dominated by two terms that have a clear physical interpretation: (i) the time rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski force which indirectly represents the history effect of vortex shedding in the far wake. Furthermore, the effects of a bio-inspired flow control mechanism based on deforming airfoil surfaces on the flow dynamics and energy harvesting performance are investigated. The results show that the aerodynamic loadings, and hence power output, are highly dependent on the formation, growth rate, trajectory and detachment of the LEV. It is shown that the energy harvesting efficiency increases with increasing reduced frequency, peaking at 25% when k = 0.14, agreeing very well with published numerical results. At this optimal reduced frequency, the time scales of the LEV evolution and airfoil kinematics are matched, resulting in highly correlated aerodynamic load generation and airfoil motion. When operating at k > 0:14, it is shown that the aerodynamic moment and airfoil pitching motion become negatively correlated and as a result, the energy harvesting performance is deteriorated. Furthermore, by using a deforming airfoil surface at the leading and trailing edges, the peak energy harvesting efficiency is shown to increase by approximately 17% and 25% relative to the rigid airfoil, respectively. The performance enhancement is associated with enhanced aerodynamic forces for both the deforming leading and trailing edges. In addition, The deforming trailing edge airfoil is shown to enhance the correlation between the aerodynamic moment and pitching motion at higher reduced frequencies, resulting in a peak efficiency at k = 0:18 as opposed to k = 0:14 for the rigid airfoil.« less
  3. ABSTRACT Numerical simulations are used to investigate large-scale (mean) magnetic field generation in rotating spherical dynamos. Beyond a certain threshold, we find that the magnitude of the mean magnetic field becomes nearly independent of the system rotation rate and buoyancy forcing. The analysis suggests that this saturation arises from the Malkus-Proctor mechanism in which a Coriolis-Lorentz force balance is achieved in the zonal component of the mean momentum equation. When based on the large-scale magnetic field, the Elsasser number is near unity in the saturated regime. The results show that the large and small magnetic field saturate via distinct mechanisms in rapidly rotating dynamos, and that only the axisymmetric component of the magnetic field appears to follow an Elsasser number scaling.
  4. This paper investigates the mechanism of self-stabilizing, three-dimensional Mie particle manipulation in water via an acoustic tweezer with a single transducer. A carefully designed acoustic lens is attached to the transducer to form an acoustic vortex, which provides angular momentum on the trapped polymer sphere and leads to a fast-spinning motion. The sphere can find equilibrium positions spontaneously during the manipulation by slightly adjusting its relative position, angular velocity, and spinning axis. The spinning motion greatly enhances the low-pressure recirculation region around the sphere, resulting in a larger pressure induced drag. Simultaneously, the Magnus effect is induced to generate an additional lateral force. The spinning motion of the trapped sphere links the acoustic radiation force and hydrodynamic forces together, so that the sphere can spontaneously achieve new force balance and follow the translational motion of the acoustic tweezer. Non-spherical objects can also be manipulated by this acoustic tweezer.

  5. Principles from human-human physical interaction may be necessary to design more intuitive and seamless robotic devices to aid human movement. Previous studies have shown that light touch can aid balance and that haptic communication can improve performance of physical tasks, but the effects of touch between two humans on walking balance has not been previously characterized. This study examines physical interaction between two persons when one person aids another in performing a beam-walking task. 12 pairs of healthy young adults held a force sensor with one hand while one person walked on a narrow balance beam (2 cm wide x 3.7 m long) and the other person walked overground by their side. We compare balance performance during partnered vs. solo beam-walking to examine the effects of haptic interaction, and we compare hand interaction mechanics during partnered beam-walking vs. overground walking to examine how the interaction aided balance. While holding the hand of a partner, participants were able to walk further on the beam without falling, reduce lateral sway, and decrease angular momentum in the frontal plane. We measured small hand force magnitudes (mean of 2.2 N laterally and 3.4 N vertically) that created opposing torque components about the beam axis and calculated the interactionmore »torque, the overlapping opposing torque that does not contribute to motion of the beam-walker’s body. We found higher interaction torque magnitudes during partnered beam-walking vs . partnered overground walking, and correlation between interaction torque magnitude and reductions in lateral sway. To gain insight into feasible controller designs to emulate human-human physical interactions for aiding walking balance, we modeled the relationship between each torque component and motion of the beam-walker’s body as a mass-spring-damper system. Our model results show opposite types of mechanical elements (active vs . passive) for the two torque components. Our results demonstrate that hand interactions aid balance during partnered beam-walking by creating opposing torques that primarily serve haptic communication, and our model of the torques suggest control parameters for implementing human-human balance aid in human-robot interactions.« less