skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seagrass deformation affects fluid instability and tracer exchange in canopy flow
Abstract Monami is the synchronous waving of a submerged seagrass bed in response to unidirectional fluid flow. Here we develop a multiphase model for the dynamical instabilities and flow-driven collective motions of buoyant, deformable seagrass. We show that the impedance to flow due to the seagrass results in an unstable velocity shear layer at the canopy interface, leading to a periodic array of vortices that propagate downstream. Our simplified model, configured for unidirectional flow in a channel, provides a better understanding of the interaction between these vortices and the seagrass bed. Each passing vortex locally weakens the along-stream velocity at the canopy top, reducing the drag and allowing the deformed grass to straighten up just beneath it. This causes the grass to oscillate periodically even in the absence of water waves. Crucially, the maximal grass deflection is out of phase with the vortices. A phase diagram for the onset of instability shows its dependence on the fluid Reynolds number and an effective buoyancy parameter. Less buoyant grass is more easily deformed by the flow and forms a weaker shear layer, with smaller vortices and less material exchange across the canopy top. While higher Reynolds number leads to stronger vortices and larger waving amplitudes of the seagrass, waving amplitude is maximized at intermediate grass buoyancy. All together, our theory and computations develop an updated schematic of the instability mechanism consistent with experimental observations.  more » « less
Award ID(s):
1756279
PAR ID:
10450541
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulence statistics and blade deformations of flexible emergent canopies impinged by water flows were experimentally investigated across a range of Reynolds numbers Reb=Ubb/ν (where Ub is the bulk incoming flow velocity, b is the blade width, and ν is the water kinematic viscosity) and blade aspect ratios AR=h/b (h is the blade length). Time-resolved particle image velocimetry was used to characterize both the deformation of flexible blades and the surrounding flow fields. Results showed that the blade deformation increased with the growth of both Reb and AR, with higher blade bending causing stronger variations in vertical profiles of streamwise velocities and Reynolds stresses. The drag produced by the presence of flexible canopies was identified as the dominant fluid loading balancing the pressure gradient. This term exhibited distinctive reduction near the water surface region with high blade deformation due to the large local blade inclination angle. Interestingly, in contrast to fully submerged flexible blades where the flow-induced drag increases monotonously with flow speed, a critical Reynolds number Reb,cri was observed, beyond which drag decreased with increasing flow speed until the blade became fully submerged. This phenomenon was explained with theoretical interpretations, which exhibited reasonable agreement with experimental results. Further analysis of unsteady flow dynamics revealed that Reynolds stress within the canopy was dominated by ejection events due to the absence of shear layer at the top of emergent canopy. Additionally, streamwise velocity spectra indicated that flow fluctuations inside the canopy were governed by periodic vortex shedding from blade. 
    more » « less
  2. This experimental study explores the physical mechanisms by which a transverse jet’s upstream shear layer can transition from being a convective instability to an absolute/global instability as the jet-to-cross-flow momentum flux ratio $$J$$ is reduced. As first proposed in computational studies by Iyer & Mahesh ( J. Fluid Mech. , vol. 790, 2016, pp. 275–307), the upstream shear layer just beyond the jet injection may be analogous to a local counter-current shear layer, which is known for a planar geometry to become absolutely unstable at a large enough counter-current shear layer velocity ratio, $$R_{1}$$ . The present study explores this analogy for a range of transverse jet momentum flux ratios and jet-to-cross-flow density ratios $$S$$ , for jets containing differing species concentrations (nitrogen, helium and acetone vapour) at several different jet Reynolds numbers. These studies make use of experimental data extracted from stereo particle image velocimetry as well as simultaneous stereo particle image velocimetry and acetone planar laser-induced fluorescence imaging. They provide experimental evidence for the relevance of the counter-current shear layer analogy to upstream shear layer instability transition in a nozzle-generated transverse jet. 
    more » « less
  3. Abstract We report direct measurement of drag forces due to tidal flow over a submerged seagrass bed in Ngeseksau Reef, Koror State, Republic of Palau. In our study, drag is computed using an array of high‐resolution pressure measurements, from which values of the drag coefficients,CD, referenced to measured depth‐averaged velocities,V, were inferred. Reflecting the fact that seagrass blades deflect in the presence of flow, we find thatCDis O(1) when flows are weak and tends toward a value of 0.03 at the highest velocities, behavior that is consistent with existing theory for canopy flows with flexible canopy elements. A limited subset of velocity profiles obey the law of the wall, producing values of shear velocity that, while noisy, broadly agree with values inferred from the pressure measurements. 
    more » « less
  4. null (Ed.)
    Mean flow and turbulence measurements collected in a shallow Halodule wrightii shoal grass fringe highlighted significant heterogeneity in hydrodynamic effects over relatively small spatial scales. Experiments were conducted within the vegetation canopy (~4 cm above bottom) for relatively sparse (40% cover) and dense (70% cover) vegetation, with reference measurements collected near the bed above bare sediment. Significant benthic velocity shear was observed at all sample locations, with canopy shear layers that penetrated nearly to the bed at both vegetated sites. Turbulent shear production (P) was balanced by turbulent kinetic energy dissipation (ϵ) at all sample locations (P/ϵ≈1), suggesting that stem-generated turbulence played a minor role in the overall turbulence budget. While the more sparsely vegetated sample site was associated with enhanced channel-to-shore velocity attenuation (71.4 ± 1.0%) relative to flows above bare sediment (51.7 ± 2.2%), unexpectedly strong cross-shore currents were observed nearshore in the dense canopy (VNS), with magnitudes that were nearly twice as large as those measured in the main channel (VCH; VNS/VCH¯ = 1.81 ± 0.08). These results highlight the importance of flow steering and acceleration for within- and across-canopy transport, especially at the scale of individual vegetation patches, with important implications for nutrient and sediment fluxes. Importantly, this work represents one of the first hydrodynamic studies of shoal grass fringes in shallow coastal estuaries, as well as one of the only reports of turbulent mixing within H. wrightii canopies. 
    more » « less
  5. Direct numerical simulations are performed to investigate a stratified shear layer at high Reynolds number ( $Re$ ) in a study where the Richardson number ( $Ri$ ) is varied among cases. Unlike previous work on a two-layer configuration in which the shear layer resides between two layers with constant density, an unbounded fluid with uniform stratification is considered here. The evolution of the shear layer includes a primary Kelvin–Helmholtz shear instability followed by a wide range of secondary shear and convective instabilities, similar to the two-layer configuration. During transition to turbulence, the shear layers at low $Ri$ exhibit a period of thickness contraction (not observed at lower $Re$ ) when the momentum and buoyancy fluxes are counter-gradient. The behaviour in the turbulent regime is significantly different from the case with a two-layer density profile. The transition layers, which are zones with elevated shear and stratification that form at the shear-layer edges, are stronger and also able to support a significant internal wave flux. After the shear layer becomes turbulent, mixing in the transition layers is shown to be more efficient than that which develops in the centre of the shear layer. Overall, the cumulative mixing efficiency ( $E^C$ ) is larger than the often assumed value of 1/6. Also, $E^C$ is found to be smaller than that in the two-layer configuration at moderate Ri . It is relatively less sensitive to background stratification, exhibiting little variation for $$0.08 \leqslant Ri \leqslant 0.2$$ . The dependence of mixing efficiency on buoyancy Reynolds number during the turbulence phase is qualitatively similar to homogeneous sheared turbulence. 
    more » « less