skip to main content


Title: Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy
Pulsed field gradient (PFG) NMR was used in combination with single crystal IR microscopy (IRM) to study diffusion of ethane inside crystals of a mixed linker zeolitic imidazolate framework (ZIF) of the type ZIF-7-8 under comparable experimental conditions. These crystals contain 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker). It was observed that the PFG NMR attenuation curves measured for ethane in ZIF-7-8 exhibit deviations from the monoexponential behaviour, thereby indicating that the ethane self-diffusivity in different crystals of a crystal bed can be different. Measurements of the ethane uptake curves performed by IRM under the same conditions in different ZIF-7-8 crystals of the bed yield different transport diffusivities thus confirming that the rate of ethane diffusion is different in different ZIF-7-8 crystals. The IRM observation that the fractions of ZIF-8 and ZIF-7 linkers are different in different ZIF-7-8 crystals allowed attributing the observed heterogeneity in diffusivities to the heterogeneity in the linker fraction. The quantitative comparison of the average ethane self-diffusivities measured by PFG NMR in ZIF-7-8 with the corresponding data on corrected diffusivities from IRM measurements revealed a good agreement between the results obtained by the two techniques. In agreement with the expectation of smaller aperture sizes in ZIF-7-8 than in ZIF-8, the average ethane self-diffusivities in ZIF-7-8 were found to be significantly lower than the corresponding self-diffusivities in ZIF-8.  more » « less
Award ID(s):
1561347
NSF-PAR ID:
10079254
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
37
ISSN:
1463-9076
Page Range / eLocation ID:
23967 to 23975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High magnetic fields (up to 17.6 T) in combination with large magnetic field gradients (up to 25 T/m) were successfully utilized in pulsed field gradient (PFG) NMR studies of gas and liquid diffusion in nanoporous materials. In this mini-review, we present selected examples of such studies demonstrating the ability of high field PFG NMR to gain unique insights and differentiate between various types of diffusion. These examples include identifying and explaining an anomalous relationship between molecular size and self-diffusivity of gases in a zeolitic imidazolate framework (ZIF), as well as revealing and explaining an influence of mixing different linkers in a ZIF on gas self-diffusion. Different types of normal and restricted self-diffusion were quantified in hybrid membranes formed by dispersing ZIF crystals in polymers. High field PFG NMR studies of such membranes allowed observing and explaining an influence of the ZIF crystal confinement in a polymer on intra-ZIF self-diffusion of gases. This technique also allowed measuring and understanding anomalous single-file diffusion (SFD) of mixed sorbates. Furthermore, the presented examples demonstrate a high potential of combining high field PFG NMR with single-crystal Infrared Microscopy (IRM) for obtaining greater physical insights into the studied diffusion processes. 
    more » « less
  2. Abstract

    Pulsed field gradient (PFG) NMR at high magnetic field was used to study microscopic diffusion of dimethyl methyl phosphonate (DMMP), a common chemical warfare agent (CWA) simulant, and water in Nafion membranes. PFG NMR measurements were performed for a broad range of molecular displacements. The self‐diffusivities were measured as a function of the DMMP concentration for several fixed water concentrations. The measured data suggest that DMMP and water diffuse in different regions of Nafion. While water mostly diffuses in hydrophilic regions of the membrane, viz. water channels, DMMP diffusion is mostly limited to interfacial perfluoroether regions between these water channels and the semi‐crystalline matrix.

     
    more » « less
  3. Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone. 
    more » « less
  4. Abstract

    In this article we shed light on newly emerging perspectives to characterize and understand the interplay of diffusive mass transport and surface catalytic processes in pores of gas phase metal catalysts. As a case study, nanoporous gold, as an interesting example exhibiting a well-defined pore structure and a high activity for total and partial oxidation reactions is considered. PFG NMR (pulsed field gradient nuclear magnetic resonance) measurements allowed here for a quantitative evaluation of gas diffusivities within the material. STEM (scanning transmission electron microscopy) tomography furthermore provided additional insight into the structural details of the pore system, helping to judge which of its features are most decisive for slowing down mass transport. Based on the quantitative knowledge about the diffusion coefficients inside a porous catalyst, it becomes possible to disentangle mass transport contributions form the measured reaction kinetics and to determine the kinetic rate constant of the underlying catalytic surface reaction. In addition, predictions can be made for an improved effectiveness of the catalyst, i.e., optimized conversion rates. This approach will be discussed at the example of low-temperature CO oxidation, efficiently catalysed by npAu at 30 °C. The case study shall reveal that novel porous materials exhibiting well-defined micro- and mesoscopic features and sufficient catalytic activity, in combination with modern techniques to evaluate diffusive transport, offer interesting new opportunities for an integral understanding of catalytic processes.

    Graphical Abstract

     
    more » « less
  5. Archaean orbicular granitoids from western Australia were investigated to better understand crystal growth processes. The orbicules are dioritic to tonalitic spheroids dispersed in a granitic host magma. Most orbicules have at least two to three concentric bands composed of elongate and radially oriented hornblendes with interstitial plagioclase. Each band consists of a hornblende-rich outer layer and a plagioclase-rich inner layer. Doublet band thicknesses increase, crystal number density decreases, and grain size increases from rim to core, suggesting crystallization was more rapid on the rims than in the core. Despite these radial differences, mineral mode and bulk composition of each band are similar, indicating limited crystal-melt segregation during crystallization. These observations lead us to suggest that the orbicules represent slowly quenched blobs of hot dioritic to tonalitic liquids injected into a cooler granitic magma. The oscillatory bands in the orbicules can be explained by rapid, disequilibrium crystallization (supercooling). In particular, a linear correlation between bandwidth and radial distance from orbicule rim can be explained by transport-limited crystallization, wherein crystallization timescales are shorter than chemical diffusion timescales. The slope of this linear relationship corresponds to the square root of the ratio between effective chemical diffusivity in the growth medium and thermal diffusivity, resulting in effective chemical diffusivities of 3 × 10−8 m2/s. These high effective diffusivities require static diffusion through a free volatile phase (fluid) and/or a strong advective/convective component in the fluid. Regardless of the mechanisms, these effective diffusivities can be used to estimate growth rates of ~10−6 m/s or 0.4 cm/hr. Our results indicate that crystals can grow rapidly, possibly facilitated by fluids and dynamic conditions. These rapid growth rates suggest that centimetre or larger crystals, such as in porphyritic and pegmatitic systems, can conceivably grow within days. 
    more » « less