Pegmatites are shallow, coarse-grained magmatic intrusions with crystals occasionally approaching meters in length. Compared to their plutonic hosts, pegmatites are thought to have cooled rapidly, suggesting that these large crystals must have grown fast. Growth rates and conditions, however, remain poorly constrained. Here we investigate quartz crystals and their trace element compositions from miarolitic cavities in the Stewart pegmatite in southern California, USA, to quantify crystal growth rates. Trace element concentrations deviate considerably from equilibrium and are best explained by kinetic effects associated with rapid crystal growth. Kinetic crystal growth theory is used to show that crystals accelerated from an initial growth rate of 10−6–10−7 m s−1 to 10−5–10−4 m s−1 (10-100 mm day−1 to 1–10 m day−1), indicating meter sized crystals could have formed within days, if these rates are sustained throughout pegmatite formation. The rapid growth rates require that quartz crystals grew from thin (micron scale) chemical boundary layers at the fluid-crystal interfaces. A strong advective component is required to sustain such thin boundary layers. Turbulent conditions (high Reynolds number) in these miarolitic cavities are shown to exist during crystallization, suggesting that volatile exsolution, crystallization, and cavity generation occur together. 
                        more » 
                        « less   
                    
                            
                            Disequilibrium crystallization and rapid crystal growth: a case study of orbicular granitoids of magmatic origin
                        
                    
    
            Archaean orbicular granitoids from western Australia were investigated to better understand crystal growth processes. The orbicules are dioritic to tonalitic spheroids dispersed in a granitic host magma. Most orbicules have at least two to three concentric bands composed of elongate and radially oriented hornblendes with interstitial plagioclase. Each band consists of a hornblende-rich outer layer and a plagioclase-rich inner layer. Doublet band thicknesses increase, crystal number density decreases, and grain size increases from rim to core, suggesting crystallization was more rapid on the rims than in the core. Despite these radial differences, mineral mode and bulk composition of each band are similar, indicating limited crystal-melt segregation during crystallization. These observations lead us to suggest that the orbicules represent slowly quenched blobs of hot dioritic to tonalitic liquids injected into a cooler granitic magma. The oscillatory bands in the orbicules can be explained by rapid, disequilibrium crystallization (supercooling). In particular, a linear correlation between bandwidth and radial distance from orbicule rim can be explained by transport-limited crystallization, wherein crystallization timescales are shorter than chemical diffusion timescales. The slope of this linear relationship corresponds to the square root of the ratio between effective chemical diffusivity in the growth medium and thermal diffusivity, resulting in effective chemical diffusivities of 3 × 10−8 m2/s. These high effective diffusivities require static diffusion through a free volatile phase (fluid) and/or a strong advective/convective component in the fluid. Regardless of the mechanisms, these effective diffusivities can be used to estimate growth rates of ~10−6 m/s or 0.4 cm/hr. Our results indicate that crystals can grow rapidly, possibly facilitated by fluids and dynamic conditions. These rapid growth rates suggest that centimetre or larger crystals, such as in porphyritic and pegmatitic systems, can conceivably grow within days. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1753599
- PAR ID:
- 10198867
- Date Published:
- Journal Name:
- International Geology Review
- ISSN:
- 0020-6814
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propylene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers.more » « less
- 
            Abstract We investigate the shallow plumbing system of the Deccan Traps Large Igneous Province using rock and mineral data from Giant Plagioclase Basalt (GPB) lava flows from around the entire province, but with a focus on the Saurashtra Peninsula, the Malwa Plateau, and the base and top of the Western Ghats (WG) lava pile. GPB lavas in the WG typically occur at the transition between chemically distinct basalt formations. Most GPB samples are evolved basalts, with high Fe and Ti contents, and show major and trace elements and Sr-Nd-Pb isotopic compositions generally similar to those of previously studied Deccan basalts. Major element modeling suggests that high-Fe, evolved melts typical of GPB basalts may derive from less evolved Deccan basalts by low-pressure fractional crystallization in a generally dry magmatic plumbing system. The basalts are strongly porphyritic, with 6–25% of mm- to cm-sized plagioclase megacrysts, frequently occurring as crystal clots, plus relatively rare olivine and clinopyroxene. The plagioclase crystals are mostly labradoritic, but some show bytownitic cores (general range of anorthite mol%: 78–55). A common feature is a strong Fe enrichment at the plagioclase rims, indicating interaction with an Fe-rich melt similar to that represented by the matrix compositions (FeOt up to 16–17 wt%). Plagioclase minor and trace elements and Sr isotopic compositions analyzed by laser ablation inductively coupled plasma mass spectrometry show evidence of a hybrid and magma mixing origin. In particular, several plagioclase crystals show variable 87Sr/86Sri, which only partially overlaps with the 87Sr/86Sri of the surrounding matrix. Diffusion modeling suggests residence times of decades to centuries for most plagioclase megacrysts. Notably, some plagioclase crystal clots show textural evidence of deformation as recorded by electron back-scatter diffraction analyses and chemical maps, which suggest that the plagioclase megacrysts were deformed in a crystal-rich environment in the presence of melt. We interpret the plagioclase megacrysts as remnants of a crystal mush originally formed in the shallow plumbing system of the Deccan basalts. In this environment, plagioclase acquired a zoned composition due to the arrival of chemically distinct basaltic magmas. Prior to eruption, a rapidly rising but dense Fe-rich magma was capable of disrupting the shallow level crystal mush, remobilizing part of it and carrying a cargo of buoyant plagioclase megacrysts. Our findings suggest that basaltic magmas from the Deccan Traps, and possibly from LIPs in general, are produced within complex transcrustal magmatic plumbing systems with widespread crystal mushes developed in the shallow crust.more » « less
- 
            null (Ed.)Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system.more » « less
- 
            Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid–fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    