skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multicellular Models Bridging Intracellular Signaling and Gene Transcription to Population Dynamics
Cell signaling and gene transcription occur at faster time scales compared to cellular death, division, and evolution. Bridging these multiscale events in a model is computationally challenging. We introduce a framework for the systematic development of multiscale cell population models. Using message passing interface (MPI) parallelism, the framework creates a population model from a single-cell biochemical network model. It launches parallel simulations on a single-cell model and treats each stand-alone parallel process as a cell object. MPI mediates cell-to-cell and cell-to-environment communications in a server-client fashion. In the framework, model-specific higher level rules link the intracellular molecular events to cellular functions, such as death, division, or phenotype change. Cell death is implemented by terminating a parallel process, while cell division is carried out by creating a new process (daughter cell) from an existing one (mother cell). We first demonstrate these capabilities by creating two simple example models. In one model, we consider a relatively simple scenario where cells can evolve independently. In the other model, we consider interdependency among the cells, where cellular communication determines their collective behavior and evolution under a temporally evolving growth condition. We then demonstrate the framework’s capability by simulating a full-scale model of bacterial quorum sensing, where the dynamics of a population of bacterial cells is dictated by the intercellular communications in a time-evolving growth environment.  more » « less
Award ID(s):
1609642
PAR ID:
10079376
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Processes
Volume:
6
Issue:
11
ISSN:
2227-9717
Page Range / eLocation ID:
217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wodarz, Dominik (Ed.)
    The spreading of bacterial populations is central to processes in agriculture, the environment, and medicine. However, existing models of spreading typically focus on cells in unconfined settings—despite the fact that many bacteria inhabit complex and crowded environments, such as soils, sediments, and biological tissues/gels, in which solid obstacles confine the cells and thereby strongly regulate population spreading. Here, we develop an extended version of the classic Keller-Segel model of bacterial spreading via motility that also incorporates cellular growth and division, and explicitly considers the influence of confinement in promoting both cell-solid and cell-cell collisions. Numerical simulations of this extended model demonstrate how confinement fundamentally alters the dynamics and morphology of spreading bacterial populations, in good agreement with recent experimental results. In particular, with increasing confinement, we find that cell-cell collisions increasingly hinder the initial formation and the long-time propagation speed of chemotactic pulses. Moreover, also with increasing confinement, we find that cellular growth and division plays an increasingly dominant role in driving population spreading—eventually leading to a transition from chemotactic spreading to growth-driven spreading via a slower, jammed front. This work thus provides a theoretical foundation for further investigations of the influence of confinement on bacterial spreading. More broadly, these results help to provide a framework to predict and control the dynamics of bacterial populations in complex and crowded environments. 
    more » « less
  2. We consider spatial population dynamics on a lattice, following a type of a contact (birth–death) stochastic process. We show that simple mathematical approximations for the density of cells can be obtained in a variety of scenarios. In the case of a homogeneous cell population, we derive the cellular density for a two-dimensional (2D) spatial lattice with an arbitrary number of neighbors, including the von Neumann, Moore, and hexagonal lattice. We then turn our attention to evolutionary dynamics, where mutant cells of different properties can be generated. For disadvantageous mutants, we derive an approximation for the equilibrium density representing the selection–mutation balance. For neutral and advantageous mutants, we show that simple scaling (power) laws for the numbers of mutants in expanding populations hold in 2D and 3D, under both flat (planar) and range population expansion. These models have relevance for studies in ecology and evolutionary biology, as well as biomedical applications including the dynamics of drug-resistant mutants in cancer and bacterial biofilms. 
    more » « less
  3. Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process. 
    more » « less
  4. Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes. 
    more » « less
  5. Genomically minimal cells, such as JCVI-syn3.0 and JCVI-syn3A, offer an empowering framework to study relationships between genotype and phenotype. With a polygenic basis, the fundamental physiological process of cell division depends on multiple genes of known and unknown function in JCVI-syn3A. A physical description of cellular mechanics can further understanding of the contributions of genes to cell division in this genomically minimal context. We review current knowledge on genes in JCVI-syn3A contributing to two physical parameters relevant to cell division, namely, the surface-area-to-volume ratio and membrane curvature. This physical view of JCVI-syn3A may inform the attribution of gene functions and conserved processes in bacterial physiology, as well as whole-cell models and the engineering of synthetic cells. 
    more » « less