skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photolytic Reductive Elimination of White Phosphorus from a Mononuclear cyclo ‐P 4 Transition Metal Complex
Abstract Elemental white phosphorus (P4) is well recognized as a critical precursor to organophosphorus compounds. However, regulatory constraints stemming from the toxic and pyrophoric nature of white phosphorus have significantly limited its accessibility. Herein is described a new approach to white phosphorus storage and release based on a unique example of photolytic reductive elimination of the tetrahedral P4molecule from a mononuclear cyclo‐P4molybdenum complex. The latter functions as an air‐stable, chemically‐deactivated source of white phosphorus. The system features efficient photo‐release of white phosphorus using inexpensive violet LED sources. Additionally, high‐yield recapture of unspent white phosphorus by the molybdenum center can be achieved by post‐photolysis heating at convenient temperatures.  more » « less
Award ID(s):
1802646
PAR ID:
10079506
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
6
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1779-1783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Relative to other cyclic poly‐phosphorus species (that is,cyclo‐Pn), the planarcyclo‐P4group is unique in its requirement of two additional electrons to achieve aromaticity. These electrons are supplied from one or more metal centers. However, the degree of charge transfer is dependent on the nature of the metal fragment. Unique examples of dianionic mononuclear η4‐P4complexes are presented that can be viewed as the simple coordination of the [cyclo‐P4]2−dianion to a neutral metal fragment. Treatment of the neutral, molybdenumcyclo‐P4complexes Mo(η4‐P4)I2(CO)(CNArDipp2)2and Mo(η4‐P4)(CO)2(CNArDipp2)2with KC8produces the dianionic, three‐legged piano stool complexes, [Mo(η4‐P4)(CO)(CNArDipp2)2]2−and [Mo(η4‐P4)(CO)2(CNArDipp2)]2−, respectively. Structural, spectroscopic, and computational studies reveal a similarity to the classic η6‐benzene complex (η6‐C6H6)Mo(CO)3regarding the metal‐center valence state and electronic population of the planar‐cyclic ligand π system. 
    more » « less
  2. Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (J+ 1 ←J) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J= 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J= 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R*, and an abundance, relative to H2, off∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CP and PN, respectively, both located in shells at 550–650R*. SiP may be formed from grain destruction, which liberates both phosphorus and silicon into the gas phase, and then is channeled into other P-bearing molecules such as PN and CP. 
    more » « less
  3. Abstract We report the formation of the cyclic methylphosphonic acid trimer [c‐(CH3PO2)3] through condensation reactions during thermal processing of low‐temperature methylphosphonic acid samples exploiting photoionization reflectron time‐of‐flight mass spectrometry (PI−ReTOF−MS) along with electronic structure calculations. Cyclic methylphosphonic acid trimers are formed in the solid state and detected together with its protonated species in the gas phase upon single photon ionization. Our studies provide an understanding of the preparation of phosphorus‐bearing potentially prebiotic molecules and the fundamental knowledge of low‐temperature phosphorus chemistry in extraterrestrial environments. 
    more » « less
  4. Abstract Enhanced biological phosphorus removal (EBPR) can recover significant quantities of wastewater phosphorus. However, this resource recovery process realizes limited use largely due to process stability concerns. The research evaluated the effects of anaerobic HRT (τAN) and VFA concentration—critical operational parameters that can be externally controlled—on EBPR performance. Evaluated alone, τAN(1–4 h) exhibited no statistical effect on effluent phosphorus. However, PHA increased with VFA loading and biomass accumulated more phosphorus. Regarding resiliency, under increasing VFA loads PAOs hydrolyzed more phosphorus to uptake/catabolize VFAs; moreover, PHA synthesis normalized to VFA loading increased with τAN, suggesting fermentation. Kinetically, PAOs exhibited a Monod‐like relationships for qPHAANand qVFAANas a function of anaerobic P release; additionally, qPAEexhibited a Monod‐like relationship with end‐anaerobic PHA concentration. A culminating analysis affirmed the relationship between enhanced aerobic P uptake, and net P removal, with a parameter (phosphorus removal propensity factor) that combines influent VFA concentration with τAN. Practitioner pointsEvaluated alone τANexhibits no statistical effect on effluent phosphorus in an EBPR configuration.Increased PHA synthesis, associated with increased VFAs and/or extended τAN,enhances aerobic phosphorus removal.PHA synthesis normalized to VFA loading increased with τAN, suggesting fermentation in the EBPR anaerobic zone.Aerobic phosphorus uptake increases linearly with anaerobic phosphorus release, with the slope exceeding unity.Increased VFAs can be substituted for shorter anaerobic HRTs, and vice versa, to enhance EBPR performance. 
    more » « less
  5. Abstract Orthorhombic molybdenum trioxide (α‐MoO3) is a highly anisotropic hyperbolic material in nature. Within its wide Reststrahlen bands, α‐MoO3has hyperboloidal dispersion that supports bulk propagation of high‐k phonon polariton modes. These modes can serve as energy transport channels to greatly enhance radiative heat transfer inside the material. In this work, large radiative transfer enabled by phonon polaritons in α‐MoO3is demonstrated. The study first determines the temperature‐dependent permittivity of α‐MoO3from polarized Fourier‐Transform Infrared (FTIR) spectroscopy measurements and then uses a many‐body radiative heat transfer model to predict the equivalent radiative thermal conductivity of hyperbolic phonon polariton. Contribution of radiative transfer to the total thermal transport is experimentally determined from the Time‐Domain Thermoreflectance (TDTR) measurements in a temperature range from −100 to 300 °C. It is found that radiative transfer can account for ≈60% of the total thermal transport at a temperature of 300 °C. That is, conductive thermal transport is enhanced by >100% by radiative transfer, or radiation inside α‐MoO3is greater than that of conduction. These additional energy pathways will have important implications in thermal management in new materials and devices. 
    more » « less