skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Near‐future forest vulnerability to drought and fire varies across the western United States
Abstract

Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one emissions scenario (RCP 8.5). We developed metrics of vulnerability to short‐term extreme and prolonged drought based on annual allocation to stem growth and net primary productivity. We calculated fire vulnerability based on changes in simulated future area burned relative to historical area burned. Simulated historical drought vulnerability was medium to high in areas with observations of recent drought‐related mortality. Comparisons of observed and simulated historical area burned indicate simulated future fire vulnerability could be underestimated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Mountains. Projections show that water‐limited forests in the Rocky Mountains, Southwest, and Great Basin regions will be the most vulnerable to future drought‐related mortality, and vulnerability to future fire will be highest in the Sierra Nevada and portions of the Rocky Mountains. High carbon‐density forests in the Pacific coast and western Cascades regions are projected to be the least vulnerable to either drought or fire. Importantly, differences in climate projections lead to only 1% of the domain with conflicting low and high vulnerability to fire and no area with conflicting drought vulnerability. Our drought vulnerability metrics could be incorporated as probabilistic mortality rates in earth system models, enabling more robust estimates of the feedbacks between the land and atmosphere over the 21st century.

 
more » « less
Award ID(s):
1553049
NSF-PAR ID:
10079680
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
1
ISSN:
1354-1013
Page Range / eLocation ID:
p. 290-303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.

     
    more » « less
  2. Novel climate and disturbance regimes in the 21st century threaten to increase the vulnerability of some western U.S. forests to loss of biomass and function. However, the timing and magnitude of forest vulnerabilities are uncertain and will be highly variable across the complex biophysical landscape of the region. Assessing future forest trajectories and potential management impacts under novel conditions requires place-specific and mechanistic model projections. Stakeholders in the high-carbon density forests of the northern U.S. Rocky Mountains (NRM) currently seek to understand and mitigate climate risks to these diverse conifer forests, which experienced profound 20th century disturbance from the 1910 “Big Burn” and timber harvest. Present forest management plan revisions consider approaches including increases in timber harvest that are intended to shift species compositions and increase forest stress tolerance. We utilize CLM-FATES, a dynamic vegetation model (DVM) coupled to an Earth Systems Model (ESM), to model shifting NRM forest carbon stocks and cover, production, and disturbance through 2100 under unprecedented climate and management. Across all 21st century scenarios, domain forest C-stocks and canopy cover face decline after 2090 due to the interaction of intermittent drought and fire mortality with declining Net Primary Production (NPP) and post-disturbance recovery. However, mid-century increases in forest vulnerability to fire and drought impacts are not consistently projected across climate models due to increases in precipitation that buffer warming impacts. Under all climate scenarios, increased harvest regimes diminish forest carbon stocks and increase period mortality over business-as-usual, despite some late-century reductions in forest stress. Results indicate that existing forest carbon stocks and functions are moderately persistent and that increased near-term removals may be mistimed for effectively increasing resilience.

     
    more » « less
  3. Abstract

    Changing climate and disturbance regimes are increasingly challenging the resilience of forest ecosystems around the globe. A powerful indicator for the loss of resilience is regeneration failure, that is, the inability of the prevailing tree species to regenerate after disturbance. Regeneration failure can result from the interplay among disturbance changes (e.g., larger and more frequent fires), altered climate conditions (e.g., increased drought), and functional traits (e.g., method of seed dispersal). This complexity makes projections of regeneration failure challenging. Here we applied a novel simulation approach assimilating data‐driven fire projections with vegetation responses from process modeling by means of deep neural networks. We (i) quantified the future probability of regeneration failure; (ii) identified spatial hotspots of regeneration failure; and (iii) assessed how current forest types differ in their ability to regenerate under future climate and fire. We focused on the Greater Yellowstone Ecosystem (2.9 × 106 ha of forest) in the Rocky Mountains of the USA, which has experienced large wildfires in the past and is expected to undergo drastic changes in climate and fire in the future. We simulated four climate scenarios until 2100 at a fine spatial grain (100 m). Both wildfire activity and unstocked forest area increased substantially throughout the 21st century in all simulated scenarios. By 2100, between 28% and 59% of the forested area failed to regenerate, indicating considerable loss of resilience. Areas disproportionally at risk occurred where fires are not constrained by topography and in valleys aligned with predominant winds. High‐elevation forest types not adapted to fire (i.e.,Picea engelmanniiAbies lasiocarpaas well as non‐serotinousPinus contortavar.latifoliaforests) were especially vulnerable to regeneration failure. We conclude that changing climate and fire could exceed the resilience of forests in a substantial portion of Greater Yellowstone, with profound implications for carbon, biodiversity, and recreation.

     
    more » « less
  4. Abstract

    Snow duration in post‐fire forests is influenced by neighbourhoods of trees, snags, and deadwood. We used annually resolved, spatially explicit tree and tree mortality data collected in an old‐growth, mixed‐conifer forest in the Sierra Nevada, California, that burned at low to moderate severity to calculate 10 tree neighbourhood metrics for neighbourhoods up to 40 m from snow depth and snow disappearance sampling points. We developed two linear mixed models, predicting snow disappearance timing as a function of tree neighbourhood, litter density, and simulated incoming solar radiation, and two multiple regression models explaining variation in snow depth as a function of tree neighbourhood. Higher densities of post‐fire large‐diameter snags within 10 m of a sampling point were related to higher snow depth (indicating reduced snow interception). Higher densities of large‐diameter trees within 5 m and larger amounts of litter were associated with shorter snow duration (indicating increased longwave radiation emittance and accelerated snow albedo decay). However, live trees with diameters >60 cm within 10 m of a snow disappearance sampling point were associated with a longer‐lasting spring snowpack. This suggests that, despite the local effects of canopy interception and emitted longwave radiation from boles of large trees, shading from their canopies may prolong snow duration over a larger area. Therefore, conservation of widely spaced, large‐diameter trees is important in old‐growth forests because they are resistant to fire and can enhance the seasonal duration of snowmelt.

     
    more » « less
  5. Abstract Background

    Snags, standing dead trees, are becoming more abundant in forests as tree mortality rates continue to increase due to fire, drought, and bark beetles. Snags provide habitat for birds and small mammals, and when they fall to the ground, the resulting logs provide additional wildlife habitat and affect nutrient cycling, fuel loads, and fire behavior. Predicting how long snags will remain standing after fire is essential for managing habitat, understanding chemical cycling in forests, and modeling forest succession and fuels. Few studies, however, have quantified how fire changes snag fall dynamics.

    Results

    We compared post-fire fall rates of snags that existed pre-fire (n= 2013) and snags created during or after the fire (n= 8222), using 3 years of pre-fire and 5 years of post-fire data from an annually monitored, 25.6-ha spatially explicit plot in an old-growthAbies concolor–Pinus lambertianaforest in the Sierra Nevada, CA, USA. The plot burned at low to moderate severity in the Rim Fire of 2013. We used random forest models to (1) identify predictors of post-fire snag fall for pre-existing and new snags and (2) assess the influence of spatial neighborhood and local fire severity on snag fall after fire. Fall rates of pre-existing snags increased 3 years after fire. Five years after fire, pre-existing snags were twice as likely to fall as new snags. Pre-existing snags were most likely to persist 5 years after fire if they were > 50 cm in diameter, > 20 m tall, and charred on the bole to heights above 3.7 m. New snags were also more likely to persist 5 years after fire if they were > 20 m tall. Spatial neighborhood (e.g., tree density) and local fire severity (e.g., fire-caused crown injury) within 15 m of each snag barely improved predictions of snag fall after fire.

    Conclusions

    Land managers should expect fall rates of pre-existing snags to exceed fall rates of new snags within 5 years after fire, an important habitat consideration because pre-existing snags represent a wider range of size and decay classes.

     
    more » « less