skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effect of engineering summer camps on middle school students interest and identity
A persistent problem in engineering is an insufficient number of students interested in pursuing engineering as a college major and career. Middle school is a critical time where student interest, identity, and career choices begin to solidify. Student interest in engineering at the K-12 level has been shown to predict whether they pursue engineering as a college major and career. Therefore, research is needed to determine if engineering summer camp activities affect engineering interest and identity in middle school students and in this paper, we present a research study approach to achieve the stated objective. To develop engineering-specific theories of how engineers are formed, this paper explores interest and identity development of three middle-school populations participating in engineering summer camps offered by the College of Engineering at a Western land-grant institution: (1) Young women in engineering camp (2) First generation camp and, (3) Introduction to engineering camp. The camps are identical in content and designed with the goal of increasing understanding of different engineering fields and careers. The only difference between the three camps is that the women-focused and first generation camps involve participation of guest speakers and role-model mentors appropriate for the camp populations. The main objective of designing this mixed-methods research study is to answer three research questions: (1) How strongly are engineering identity and interest linked to the intention to pursue engineering as a major in college and as a future career? (2) Which specific activities in the camps lead to a change in identity and interest in engineering? (3) To what extent and in what ways do the qualitative participant focus group interviews and observations of participants engaged in camp activities addressing research question (2) contribute to a comprehensive understanding of the quantitative data obtained via pre- and post-surveys addressing research question (1)? The research design leverages existing quantitative surveys. Additionally, focus groups and observations will be based on a selected set of questions from these surveys. The research design consists of one phase with two data streams. Quantitative data are gathered in Phase 1 from two data collection points: first, when students register for the camp and, second, at the end of the camp (post-survey). Qualitative data in the form of in-depth focus group interviews (at the end of the camp) with 4 – 5 participants per focus group and observations of camp activities during the five days of camp are implemented. For the qualitative analysis, Grounded Theory is utilized for analyzing focus group interview and observation transcripts using an iterative process that involves reading, discussing, and coding. This paper will present details of the quantitative and qualitative analysis methods used for this study. The research is funded by the National Science Foundation PFE:RIEF program.  more » « less
Award ID(s):
1738141
PAR ID:
10079760
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Program leaders put a tremendous amount of thought into how they recruit students for engineering summer camps. Recruitment methods can include information sessions, established partnerships with school districts, and teacher or school counselor nominations of students. This study seeks to assess if the methods used to recruit students broaden participation or have any impact on students’ perceptions of engineering. Two identical week-long summer camps were hosted by the University of Texas at Austin (UT Austin) in the summer of 2022. Camps were entirely free for all campers. A specific goal of the camp was to promote engineering as a career pathway for students from groups that have been historically excluded from STEM majors. Campers were rising 8th and 9th grade students in two cities near UT Austin; this age was intentionally identified as students who have sufficient STEM backgrounds to engage in meaningful engineering design challenges, and who are also at a critical inflection point with respect to decisions that put them on a trajectory to study engineering in college. Summer camp topics ranged from additive manufacturing to the chemical properties of water proofing, and students did activities such as constructing a prosthetic limb from recovered materials or designing an electronic dance game pad. In one camp session, students primarily found out about the camp by being nominated by counselors at their schools, with an intentional focus on recruiting students who might not otherwise be exposed to engineering. In the other camp session, parents signed up campers after hearing about the camp via information sent through the schools. All students who applied were accepted to the camps. Identical pre- and post-camp surveys asked campers questions about their knowledge of what engineers do, their interest in math and science, and what factors are important to them when choosing a career. Survey analysis showed that there were statistically significant differences in answers to questions between the groups in the pre-camp surveys, but post-camp surveys show that these differences disappeared after participating in the summer camp. Students whose parents directly enrolled them in the camp had higher pre-camp interest in science and technology; thus, counselor nominations may be a method to recruit students who might not have been interested in engineering had they not attended the camp. Additionally, prior to participating, campers recruited via counselor nominations had a narrower view of what engineers do than the parent-enrolled campers, but after camp the two groups had similar perceptions of what engineers do. The results of this study confirm literature findings regarding the importance of exposing young learners to engineering as a profession and broaden their views of opportunities in this field. The recruitment methods used for these camps show that nomination-based recruitment methods have the potential for greater impact on changing students’ engineering trajectories. 
    more » « less
  2. In June 2023, one faculty member and two undergraduate students in civil engineering at Pennsylvania State University collaborated with Iḷisaġvik College to host the 2023 STEM Summer Camp in Utqiaġvik, Alaska. The 5-day camp accommodated 16 Indigenous Alaskan middle school students with the goal to foster the next generation in STEM careers in Arctic Alaska. The camp included hands-on, competitive activities and region-specific experimental activities. Trips to local research and cultural centers provided insight into STEM career opportunities. The camp piqued students’ interest in STEM subjects and STEM-related careers and equipped them with some foundational knowledge to advance their studies. In preparation for the 2024 STEM summer camp again in Utqiaġvik, the organizers partnered with a local middle school in State College, PA, to host a series of STEM activities. This paper presents these STEM activities, lessons learned, and areas for future improvement. 
    more » « less
  3. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  4. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  5. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less