skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon and oxygen isotope fractionations in tree rings reveal interactions between cambial phenology and seasonal climate: Tree ring isotopes aligned with cambial phenology
Award ID(s):
1754430
PAR ID:
10079809
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant, Cell & Environment
Volume:
41
Issue:
12
ISSN:
0140-7791
Page Range / eLocation ID:
p. 2758-2772
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Summary Wood formation determines major long‐term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation.In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring‐porous; red maple: diffuse‐porous; white pine: coniferous) in a temperate mixed forest during 2017–2019.We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter‐annual fluctuations of NSC than the coniferous species.Inter‐annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation. 
    more » « less
  3. ABSTRACT AimTo quantify the intra‐community variability of leaf‐out (ICVLo) among dominant trees in temperate deciduous forests, assess its links with specific and phylogenetic diversity, identify its environmental drivers and deduce its ecological consequences with regard to radiation received and exposure to late frost. LocationEastern North America (ENA) and Europe (EUR). Time Period2009–2022. Major Taxa StudiedTemperate deciduous forest trees. MethodsWe developed an approach to quantify ICVLo through the analysis of RGB images taken from phenological cameras. We related ICVLo to species richness, phylogenetic diversity and environmental conditions. We quantified the intra‐community variability of the amount of radiation received and of exposure to late frost. ResultsLeaf‐out occurred over a longer time interval in ENA than in EUR. The sensitivity of leaf‐out to temperature was identical in both regions (−3.4 days per °C). The distributions of ICVLo were similar in EUR and ENA forests, despite the latter being more species‐rich and phylogenetically diverse. In both regions, cooler conditions and an earlier occurrence of leaf‐out resulted in higher ICVLo. ICVLo resulted in ca. 8% difference of radiation received from leaf‐out to September among individual trees. Forest communities in ENA had shorter safety margins as regards the exposure to late frosts, and were actually more frequently exposed to late frosts. Main ConclusionsWe conducted the first intercontinental analysis of the variability of leaf‐out at the scale of tree communities. North American and European forests showed similar ICVLo, in spite of their differences in terms of species richness and phylogenetic diversity, highlighting the relevance of environmental controls on ICVLo. We quantified two ecological implications of ICVLo (difference in terms of radiation received and exposure to late frost), which should be explored in the context of ongoing climate change, which affects trees differently according to their phenological niche. 
    more » « less