skip to main content


Title: Directing the reactivity of metal hydrides for selective CO 2 reduction

A critical challenge in electrocatalytic CO2reduction to renewable fuels is product selectivity. Desirable products of CO2reduction require proton equivalents, but key catalytic intermediates can also be competent for direct proton reduction to H2. Understanding how to manage divergent reaction pathways at these shared intermediates is essential to achieving high selectivity. Both proton reduction to hydrogen and CO2reduction to formate generally proceed through a metal hydride intermediate. We apply thermodynamic relationships that describe the reactivity of metal hydrides with H+and CO2to generate a thermodynamic product diagram, which outlines the free energy of product formation as a function of proton activity and hydricity (∆GH−), or hydride donor strength. The diagram outlines a region of metal hydricity and proton activity in which CO2reduction is favorable and H+reduction is suppressed. We apply our diagram to inform our selection of [Pt(dmpe)2](PF6)2as a potential catalyst, because the corresponding hydride [HPt(dmpe)2]+has the correct hydricity to access the region where selective CO2reduction is possible. We validate our choice experimentally; [Pt(dmpe)2](PF6)2is a highly selective electrocatalyst for CO2reduction to formate (>90% Faradaic efficiency) at an overpotential of less than 100 mV in acetonitrile with no evidence of catalyst degradation after electrolysis. Our report of a selective catalyst for CO2reduction illustrates how our thermodynamic diagrams can guide selective and efficient catalyst discovery.

 
more » « less
NSF-PAR ID:
10080025
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
50
ISSN:
0027-8424
Page Range / eLocation ID:
p. 12686-12691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A series of twelve second coordination sphere (SCS) functionalized manganese tricarbonyl bipyridyl complexes are investigated for their electrocatalytic CO2reduction properties in acetonitrile. A qualitative and quantitative assessment of the SCS functional groups is discussed with respect to the catalysts’ thermodynamic and kinetic efficiencies, and their product selectivities. In probing a broad scope of functional groups, it is clear that only the aprotic ortho‐arylester SCS is capable of promoting the highly desired low‐overpotential proton‐transfer electron‐transfer (PT‐ET) pathway for selective CO production. The ortho‐phenolic analogues cause an increase in overpotential with a product selectivity favoring H2evolution, consistent with a high‐overpotential pathway via the anionic [Mn−H]intermediate. Alternative aprotic Lewis base functional groups such as trifluoromethyl, morpholine and acetamide are shown to also be capable of intermediate manganese hydride generation. The tertiary amine substituent, 2‐morpholinophenyl, exhibits a desirable product distribution characteristic of syn‐gas (CO : H2=30 : 48) with an impressive turnover frequency, while the secondary amine group, 2‐acetamidophenyl, induces a notable shift in selectivity with a faradaic yield of 55 % for the formate (HCO2) product. In addition to their catalytic properties, cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC) studies are presented to probe pre‐catalyst electronic properties and the two‐electron reduction activation pathway.

     
    more » « less
  2. Pincer-ligated catalysts that can undergo metal–ligand cooperativity (MLC), whereby H 2 is heterolytically cleaved (with proton transfer to the ligand and hydride transfer to the metal), have emerged as potent catalysts for the hydrogenation of CO 2 and organic carbonyls. Despite the plethora of systems developed that differ in metal/ligand identity, no studies establish how variation of the metal impacts the pertinent thermochemical properties of the catalyst, namely the equilibrium with H 2 , the hydricity of the resulting hydride, and the acidity of the ligand. These parameters can impact the kinetics, scope, and mechanism of catalysis and hence should be established. Herein, we describe how changing the metal (Co, Fe, Mn, Ru) and charge (neutral vs. anionic) impacts these parameters in a series of PNP-ligated catalysts (PNP = 2,6-bis[(di- tert -butylphosphino)methyl]pyridine). A linear correlation between hydricity and ligand p K a (when bound to the metal) is found, indicating that the two parameters are not independent of one another. This trend holds across four metals, two charges, and two different types of ligand (amine/amide and aromatization/de-aromatization). Moreover, the effect of ligand deprotonation on the hydricity of (PNP)(CO)(H)Fe–H and (PNP)(CO)(H)Ru–H is assessed. It is determined that deprotonation to give anionic hydride species enhances the hydricity by ∼16.5 kcal mol −1 across three metals. Taken together, this work suggests that the metal identity has little effect on the thermodynamic parameters for PNP-ligated systems that undergo MLC via (de)aromatization, whilst the effect of charge is significant; moreover, ion-pairing allows for further tuning of the hydricity values. The ramifications of these findings for catalysis are discussed. 
    more » « less
  3. Abstract

    Electrocatalytic two‐electron reduction of oxygen is a promising method for producing sustainable H2O2but lacks low‐cost and selective electrocatalysts. Here, the Chevrel phase chalcogenide Ni2Mo6S8is presented as a novel active motif for reducing oxygen to H2O2in an aqueous electrolyte. Although it has a low surface area, the Ni2Mo6S8catalyst exhibits exceptional activity for H2O2synthesis with >90% H2O2molar selectivity across a wide potential range. Chemical titration verified successful generation of H2O2and confirmed rates as high as 90 mmol H2O2gcat−1h−1. The outstanding activities are attributed to the ligand and ensemble effects of Ni that promote H2O dissociation and proton‐coupled reduction of O2to HOO*, and the spatial effect of the Chevrel phase structure that isolates Ni active sites to inhibit OO cleavage. The synergy of these effects delivers fast and selective production of H2O2with high turn‐over frequencies of ≈30 s−1. In addition, the Ni2Mo6S8catalyst has a stable crystal structure that is resistive for oxidation and delivers good catalyst stability for continuous H2O2production. The described Ni‐Mo6S8active motif can unlock new opportunities for designing Earth‐abundant electrocatalysts to tune oxygen reduction for practical H2O2production.

     
    more » « less
  4. Abstract

    A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products.

     
    more » « less
  5. Abstract

    Converting CO2to value‐added chemicals,e. g., CH3OH, is highly desirable in terms of the carbon cycling while reducing CO2emission from fossil fuel combustion. Cu‐based nanocatalysts are among the most efficient for selective CO2‐to‐CH3OH transformation; this conversion, however, suffers from low reactivity especially in the thermodynamically favored low temperature range. We herein report ultrasmall copper (Cu) nanocatalysts supported on crystalline, mesoporous zinc oxide nanoplate (Cu@mZnO) with notable activity and selectivity of CO2‐to‐CH3OH in the low temperature range of 200–250 °C. Cu@mZnO nanoplates are prepared based on the crystal‐crystal transition of mixed Cu and Zn basic carbonates to mesoporous metal oxides and subsequent hydrogen reduction. Under the nanoconfinement of mesopores in crystalline ZnO frameworks, ultrasmall Cu nanoparticles with an average diameter of 2.5 nm are produced. Cu@mZnO catalysts have a peak CH3OH formation rate of 1.13 mol h−1per 1 kg under ambient pressure at 246 °C, about 25 °C lower as compared to that of the benchmark catalyst of Cu−Zn−Al oxides. Our new synthetic strategy sheds some valuable insights into the design of porous catalysts for the important conversion of CO2‐to‐CH3OH.

     
    more » « less