Completing a series of nickel-group 13 complexes, a coordinatively unsaturated nickel-boron complex and its derivatives with a H 2 , N 2 , or hydride ligand were synthesized and characterized. The toggling “on” of a Ni(0)–B( iii ) inverse-dative bond enabled the stabilization of a nickel-bound anionic hydride with a remarkably low thermodynamic hydricity of kcal mol −1 in THF. The flexible topology of the boron metalloligand confers both favorable hydrogen binding affinity and strong hydride donicity, albeit at the cost of high H 2 basicity during deprotonation to form the hydride.
more »
« less
Large changes in hydricity as a function of charge and not metal in (PNP)M–H (de)hydrogenation catalysts that undergo metal–ligand cooperativity
Pincer-ligated catalysts that can undergo metal–ligand cooperativity (MLC), whereby H 2 is heterolytically cleaved (with proton transfer to the ligand and hydride transfer to the metal), have emerged as potent catalysts for the hydrogenation of CO 2 and organic carbonyls. Despite the plethora of systems developed that differ in metal/ligand identity, no studies establish how variation of the metal impacts the pertinent thermochemical properties of the catalyst, namely the equilibrium with H 2 , the hydricity of the resulting hydride, and the acidity of the ligand. These parameters can impact the kinetics, scope, and mechanism of catalysis and hence should be established. Herein, we describe how changing the metal (Co, Fe, Mn, Ru) and charge (neutral vs. anionic) impacts these parameters in a series of PNP-ligated catalysts (PNP = 2,6-bis[(di- tert -butylphosphino)methyl]pyridine). A linear correlation between hydricity and ligand p K a (when bound to the metal) is found, indicating that the two parameters are not independent of one another. This trend holds across four metals, two charges, and two different types of ligand (amine/amide and aromatization/de-aromatization). Moreover, the effect of ligand deprotonation on the hydricity of (PNP)(CO)(H)Fe–H and (PNP)(CO)(H)Ru–H is assessed. It is determined that deprotonation to give anionic hydride species enhances the hydricity by ∼16.5 kcal mol −1 across three metals. Taken together, this work suggests that the metal identity has little effect on the thermodynamic parameters for PNP-ligated systems that undergo MLC via (de)aromatization, whilst the effect of charge is significant; moreover, ion-pairing allows for further tuning of the hydricity values. The ramifications of these findings for catalysis are discussed.
more »
« less
- Award ID(s):
- 1945646
- PAR ID:
- 10403333
- Date Published:
- Journal Name:
- Catalysis Science & Technology
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 2044-4753
- Page Range / eLocation ID:
- 1358 to 1368
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal ligand cooperativity (MLC) has revealed a plethora of unusual reactivity in catalysis in the last couple of decades. Since Milstein's report of aromatization-dearomatization of the pincer backbone of pyridine-based-pincer complexes, ruthenium has played a partic ularly important role in the develo pment of M LC. We have recently reported a (H- P3 )Ir complex which is the fastest known catalyst for alkane-transfer dehydrogenation. The active species results from P- to-Ir migration of H in this system. We further explored the possib ility of MLC in an analogous Ru system. Surprisingly, when metalating the same H-P3 ligand with a RuCl2 precursor we only isolated a (Cl-P3 )Ru(H)Cl complex where H had migrated to Ru from P, and Cl to P from Ru ("P- H/M-X exchange"). We have demonstrated that the thermodynamically favored direction of such exchanges depends strongly on the ancillary ligands, with particular driving force for formation of 5-coordinate (pincer)MHCl complexes (M = d6 metal center) . However, for 6- coordinate Ru complexes (H- pincer)MXYL, the electronic nature of L appears to determine if P-H/M-X exchange occurs. Strongly pi-accepting ligands promote P-X/M-H exchange with the reaction observed for L = CO, xylylisonitrile and N O+ , but not for L = N2 , C H3 CN, or PMe3 . While exchange at 5- coordinate (16e- ) Ru centers appears to proceed through initial P-to-Ru migration of X or H, to give a phosphide interme diate, in the case of 6- coordinate (18e- ) Ru centers exchange is believed to proceed through phosphoranyl intermediates. DFT and intrinsic bond orbital anal. has been used to better understand this reactivity.more » « less
-
null (Ed.)The prevalence of transition metal-mediated hydride transfer reactions in chemical synthesis, catalysis, and biology has inspired the development of methods for characterizing the reactivity of transition metal hydride complexes. Thermodynamic hydricity represents the free energy required for heterolytic cleavage of the metal–hydride bond to release a free hydride ion, H − , as determined through equilibrium measurements and thermochemical cycles. Kinetic hydricity represents the rate of hydride transfer from one species to another, as measured through kinetic analysis. This tutorial review describes the common methods for experimental and computational determination of thermodynamic and kinetic hydricity, including advice on best practices and precautions to help avoid pitfalls. The influence of solvation on hydricity is emphasized, including opportunities and challenges arising from comparisons across several different solvents. Connections between thermodynamic and kinetic hydricity are discussed, and opportunities for utilizing these connections to rationally improve catalytic processes involving hydride transfer are highlighted.more » « less
-
In this work, we introduce a novel concept of a borane group vicinal to a metal boryl bond acting as a supporting hemilabile ligand in exohedrally metalated three-dimensional carborane clusters. The (POBOP)Ru(Cl)(PPh 3 ) pincer complex (POBOP = 1,7-OP( i -Pr) 2 - m -2-carboranyl) features extreme distortion of the two-center-two-electron Ru–B bond due to the presence of a strong three-center-two-electron B–H⋯Ru vicinal interaction. Replacement of the chloride ligand with a hydride afforded the (POBOP)Ru(H)(PPh 3 ) pincer complex, which possesses B–Ru, B–H⋯Ru, and Ru–H bonds. This complex was found to exhibit a rapid exchange between hydrogen atoms of the borane and the terminal hydride through metal center shuttling between two boron atoms of the carborane cage. This exchange process, which involves sequential cleavage and formation of strong covalent metal–boron and metal–hydrogen bonds, is unexpectedly facile at temperatures above −50 °C corresponding to an activation barrier of 12.2 kcal mol −1 . Theoretical calculations suggested two equally probable pathways for the exchange process through formally Ru(0) or Ru( iv ) intermediates, respectively. The presence of this hemilabile vicinal B–H⋯Ru interaction in (POBOP)Ru(H)(PPh 3 ) was found to stabilize a latent coordination site at the metal center promoting efficient catalytic transfer dehydrogenation of cyclooctane under nitrogen and air at 170 °C.more » « less
-
Metal-ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+-C state, which contains a bridging hydride. Instead the tautomeric Nia+-L states were observed. Overall, the results provided insight into complex metal-ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts.more » « less
An official website of the United States government

