skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling
A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly quantified, at least partly due to a lack of informative, comparable, and accessible datasets at regional-to-global scales. A growing research infrastructure of multi-site networks are providing valuable data on C fluxes and stocks and are monitoring their responses to global environmental change and measuring responses to experimental treatments. These networks thus provide an opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model them. However, coherent information on how nutrient cycling interacts with observed C cycle patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements from monitoring and experimental sites with data characterizing nutrient availability will greatly enhance their power and will improve our capacity to forecast future trajectories of terrestrial C cycling and climate. Therefore, we propose a set of complementary measurements that are relatively easy to conduct routinely at any site or experiment and that, in combination with C cycle observations, can provide a robust characterization of the effects of nutrient availability across sites. In addition, we discuss the power of different observable variables for informing the formulation of models and constraining their predictions. Most widely available measurements of nutrient availability often do not align well with current modelling needs. This highlights the importance to foster the interaction between the empirical and modelling communities for setting future research priorities.  more » « less
Award ID(s):
1637686
PAR ID:
10080330
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
ISSN:
1748-9326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increased nutrient inputs due to anthropogenic activity are expected to increase primary productivity across terrestrial ecosystems, but changes in allocation aboveground versus belowground with nutrient addition have different implications for soil carbon (C) storage. Thus, given that roots are major contributors to soil C storage, understanding belowground net primary productivity (BNPP) and biomass responses to changes in nutrient availability is essential to predicting carbon–climate feedbacks in the context of interacting global environmental changes. To address this knowledge gap, we tested whether a decade of nitrogen (N) and phosphorus (P) fertilization consistently influenced aboveground and belowground biomass and productivity at nine grassland sites spanning a wide range of climatic and edaphic conditions in the continental United States. Fertilization effects were strong aboveground, with both N and P addition stimulating aboveground biomass at nearly all sites (by 30% and 36%, respectively, on average). P addition consistently increased root production (by 15% on average), whereas other belowground responses to fertilization were more variable, ranging from positive to negative across sites. Site‐specific responses to P were not predicted by the measured covariates. Atmospheric N deposition mediated the effect of N fertilization on root biomass and turnover. Specifically, atmospheric N deposition was positively correlated with root turnover rates, and this relationship was amplified with N addition. Nitrogen addition increased root biomass at sites with low N deposition but decreased it at sites with high N deposition. Overall, these results suggest that the effects of nutrient supply on belowground plant properties are context dependent, particularly with regard to background N supply rates, demonstrating that site conditions must be considered when predicting how grassland ecosystems will respond to increased nutrient loading from anthropogenic activity. 
    more » « less
  2. Abstract Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross‐network synthesis research and outline opportunities and challenges for the future, focusing on the US‐based research network (the US Long‐Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER‐NEON cross‐network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross‐network syntheses at co‐located sites in the LTER and NEON networks are addressing six broad topics: how long‐term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic‐terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross‐network syntheses involving multiple long‐term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross‐network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad‐scale research that supports resource management and environmental policy. 
    more » « less
  3. Abstract Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2, temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2, warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible atdoi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis‐based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub. 
    more » « less
  4. Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate. 
    more » « less
  5. Abstract Free‐living nematodes are one of the most diverse metazoan taxa in terrestrial ecosystems and are critical to the global soil carbon (C) cycling through their role in organic matter decomposition. They are highly dependent on water availability for movement, feeding, and reproduction. Projected changes in precipitation across temporal and spatial scales will affect free‐living nematodes and their contribution to C cycling with unforeseen consequences. We experimentally reduced and increased growing season precipitation for 2 years in 120 field plots at arid, semiarid, and mesic grasslands and assessed precipitation controls on nematode genus diversity, community structure, and C footprint. Increasing annual precipitation reduced nematode diversity and evenness over time at all sites, but the mechanism behind these temporal responses differed for dry and moist grasslands. In arid and semiarid sites, there was a loss of drought‐adapted rare taxa with increasing precipitation, whereas in mesic conditions increases in the population of predaceous taxa with increasing precipitation may have caused the observed reductions in dominant colonizer taxa and yielded the negative precipitation–diversity relationship. The effects of temporal changes in precipitation on all aspects of the nematode C footprint (respiration, production, and biomass C) were all dependent on the site (significant spatial × temporal precipitation interaction) and consistent with diversity responses at mesic, but not at arid and semiarid, grasslands. These results suggest that free‐living nematode biodiversity and their C footprint will respond to climate change‐driven shifts in water availability and that more frequent extreme wet years may accelerate decomposition and C turnover in semiarid and arid grasslands. 
    more » « less