skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid photochemical equilibration of isotope bond ordering in O 2: Photochemical isotope reordering in O2
Award ID(s):
1049655
PAR ID:
10080334
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
119
Issue:
17
ISSN:
2169-897X
Page Range / eLocation ID:
10552 to 10566
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles. 
    more » « less
  2. Abstract Plasmon‐mediated carrier transfer (PMCT) at metal–semiconductor heterojunctions has been extensively exploited to drive photochemical reactions, offering intriguing opportunities for solar photocatalysis. However, to date, most studies have been conducted using noble metals. Inexpensive materials capable of generating and transferring hot carriers for photocatalysis via PMCT have been rarely explored. Here, we demonstrate that the plasmon excitation of nickel induces the transfer of both hot electrons and holes from Ni to TiO2in a rationally designed Ni–TiO2heterostructure. Furthermore, it is discovered that the transferred hot electrons either occupy oxygen vacancies (VO) or produce Ti3+on TiO2, while the transferred hot holes are located on surface oxygens at TiO2. Moreover, the transferred hot electrons are identified to play a primary role in driving the degradation of methylene blue (MB). Taken together, our results validate Ni as a promising low‐cost plasmonic material for prompting visible‐light photochemical reactions. 
    more » « less