skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Plasmonic Nickel–TiO 2 Heterostructures for Visible‐Light‐Driven Photochemical Reactions
Abstract Plasmon‐mediated carrier transfer (PMCT) at metal–semiconductor heterojunctions has been extensively exploited to drive photochemical reactions, offering intriguing opportunities for solar photocatalysis. However, to date, most studies have been conducted using noble metals. Inexpensive materials capable of generating and transferring hot carriers for photocatalysis via PMCT have been rarely explored. Here, we demonstrate that the plasmon excitation of nickel induces the transfer of both hot electrons and holes from Ni to TiO2in a rationally designed Ni–TiO2heterostructure. Furthermore, it is discovered that the transferred hot electrons either occupy oxygen vacancies (VO) or produce Ti3+on TiO2, while the transferred hot holes are located on surface oxygens at TiO2. Moreover, the transferred hot electrons are identified to play a primary role in driving the degradation of methylene blue (MB). Taken together, our results validate Ni as a promising low‐cost plasmonic material for prompting visible‐light photochemical reactions.  more » « less
Award ID(s):
1808539 1352328 1126115
PAR ID:
10089204
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
18
ISSN:
1433-7851
Page Range / eLocation ID:
p. 6038-6041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Utilizing plasmon‐generated hot carriers to drive chemical reactions has emerged as a popular topic in solar photocatalysis. However, a complete description of the underlying mechanism of hot‐carrier transfer in photochemical processes remains elusive, particularly for those involving hot holes. Photoelectrochemistry enables to localize hot holes on photoanodes and hot electrons on photocathodes and thus offers an approach to separately explore the hole‐transfer dynamics and electron‐transfer dynamics. This review summarizes a comprehensive understanding of both hot‐hole and hot‐electron transfers from photoelectrochemical studies on plasmonic electrodes. Additionally, working principles and applications of spectroelectrochemistry are discussed for plasmonic materials. It is concluded that photoelectrochemistry provides a powerful toolbox to gain mechanistic insights into plasmonic photocatalysis. 
    more » « less
  2. Abstract Self‐sustaining photocatalytic NO3reduction systems could become ideal NO3removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−N) aqueous solution of NO3, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3reduction to occur on the Ni2P surface. 
    more » « less
  3. Plasmonic nanoparticles have been demonstrated to enhance photocatalysis due to their strong photon absorption and efficient hot-carrier generation. However, plasmonic photocatalysts suffer from a short lifetime of plasmon-generated hot carriers that decay through internal relaxation pathways before being harnessed for chemical reactions. Here, we demonstrate the enhanced photocatalytic reduction of gold ions on gold nanorods functionalized with polyvinylpyrrolidone. The catalytic activities of the reaction are quantified by in situ monitoring of the spectral evolution of single nanorods using a dark-field scattering microscope. We observe a 13-fold increase in the reduction rate with the excitation of d-sp interband transition compared to dark conditions, and a negligible increase in the reduction rate when excited with intraband transition. The hole scavenger only plays a minor role in the photocatalytic reduction reaction. We attribute the enhanced photocatalysis to an efficient charge separation at the gold–polyvinylpyrrolidone interface, where photogenerated d-band holes at gold transfer to the HOMO of polyvinylpyrrolidone, leading to the prolonged lifetime of the electrons that subsequently reduce gold ions to gold atoms. These results provide new insight into the design of plasmonic photocatalysts with capping ligands. 
    more » « less
  4. Abstract Covalent organic frameworks (COFs) have received broad interest owing to their permanent porosity, high stability, and tunable functionalities. COFs with long‐range π‐conjugation and photosensitizing building blocks have been explored for sustainable photocatalysis. Herein, we report the first example of COF‐based energy transfer Ni catalysis. A pyrene‐based COF with sp2carbon‐conjugation was synthesized and used to coordinate NiIIcenters through bipyridine moieties. Under light irradiation, enhanced energy transfer in the COF facilitated the excitation of Ni centers to catalyze borylation and trifluoromethylation reactions of aryl halides. The COF showed two orders of magnitude higher efficiency in these reactions than its homogeneous control and could be recovered and reused without significant loss of catalytic activity. 
    more » « less
  5. Abstract Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag20nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag20nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems. 
    more » « less