skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Use of Citizen Science to Improve Student Experience in Engineering Design, Manufacturing and Sustainability Education
This study used the unrealized potential of citizen science as an innovative educational tool with the aim of enhancing research and learning experience of students in several engineering design and manufacturing courses with a particular focus on sustainability-related topics. Citizen science has been employed as a data collection and educational tool in two engineering courses at the University at Buffalo in which students were tasked with reporting examples of good and bad designs they observe in their everyday life. The results revealed the significant potential of citizen scientists to report innovative and informative design and manufacturing ideas.  more » « less
Award ID(s):
1435908
PAR ID:
10080355
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Procedia manufacturing
Volume:
26
ISSN:
2351-9789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Traditionally, engineering design is taught as a tool for synthesis and integration of engineering content knowledge for students in capstone courses. These engineering design courses are usually successful, in that the students do well, they come up with innovative solutions, and they are satisfied with their school experience and feel ready for the real world. But, what is the evidence that students have actually learned and can apply their design and engineering learning successfully for synthesis and integration? What are the student’s own understandings of the design process and engineering design practice? How might they conceive of their own engineering and design epistemic identities? This work investigates these questions. 
    more » « less
  2. Research integrated into higher education curricula has been shown by numerous studies to be beneficial to undergraduate students. Citizen science provides an alternative to research performed in a lab and is gaining traction as a good choice for integration into classes. The Undergraduate Student Experiences in Citizen Science (USE Cit Sci) research collaboration network is working to help more instructors in higher education adopt citizen science as part of their curriculum by providing training and educational materials. To date, the Network has identified areas of critical need for citizen science to be more readily used in higher education courses and created a clearinghouse of lessons for faculty to use freely. Forthcoming products of the USE Cit Sci network include direct partnerships between educators and citizen science projects in addition to a peer mentoring program. Given the preponderance of ecology citizen science projects available, bringing this educational opportunity to students opens new avenues of pedagogical experiences. 
    more » « less
  3. Abstract Citizen science involves the public in science to investigate research questions. Although citizen science facilitates learning in informal educational settings, little is known about its use or effects in postsecondary (college or university) settings. Using a literature review and a survey, we describe how and why citizen science is being used in postsecondary courses, as well as the impacts on student learning. We found that citizen science is used predominantly in biologically related fields, at diverse types of institutions, to improve student engagement and expose students to authentic research. Considerable anecdotal evidence supporting improved student learning from these experiences exists, but little empirical evidence exists to warrant any conclusion. Therefore, there is a need to rigorously assess the relationship between citizen science participation and postsecondary student learning. We highlight considerations for instructors planning to incorporate citizen science and for citizen science projects wanting to facilitate postsecondary use. 
    more » « less
  4. Haptic technology has the potential to expand and transform the ways that students can experience a variety of science, technology, engineering, and math (STEM) topics. Designing kinesthetic haptic devices for educational applications is challenging because of the competing objectives of using low-cost components, making the device robust enough to be handled by students, and the desire to render high fidelity haptic virtual environments. In this paper, we present the evolution of a device called "Hapkit": a low cost, one-degree-of-freedom haptic kit that can be assembled by students. From 2013-2015, different versions of Hapkit were used in courses as a tool to teach haptics, physics, and control. These include a Massive Open Online Course (MOOC), two undergraduate courses, a graduate course, and a middle school class. Based on our experience using Hapkit in these educational environments, we evolved the design in terms of its structural materials, drive mechanism, and mechatronic components. Our latest design, Hapkit 3.0, includes several features that allow students to manufacture and assemble a robust and high-fidelity haptic device. First, it uses 3-D printed plastic structural material, which allows the design to be built and customized using readily available tools. Second, the design takes into account the limitations of 3-D printing, such as warping during printing and poor tolerances. This is achieved at a materials cost of approximately US $50, which makes it feasible for distribution in classroom and online education settings. The open source design is available at http://hapkit.stanford.edu. 
    more » « less
  5. Bucks County Community College (Bucks) in collaboration with Drexel University (Drexel) is committed to increasing the number of workforce ready engineers and engineering technicians and to creating a blueprint for 2+2 engineering education programs nationally. Recently, educational reform took an unexpected turn to remote teaching due to the world-wide COVID-19 pandemic. Within our NSF ATE grant to enhance our present engineering technology curriculum we modified and enhanced instructional and student engagement methods to assure workforce readiness of our students in a remote world. Curriculum enhancements within the engineering technology (ET) occupational major at Bucks and the B.S. in ET degree program at Drexel, modifications to delivery of workforce development certification programs through the Bucks Center for Workforce Development (CWD), and college-wide student engagement strategies were implemented to assure quality education and student engagement. Modifications to credit courses included asynchronous online courses, synchronous remote courses, and hybrid courses, which combined remote and on campus laboratory instruction. Our CWD implemented hybrid instruction that included necessary resources for students such as tool kits and borrowed laptop computers. In addition, a college wide program called Bucks+ was implemented through the Bucks Business and Innovation Department to increase enrollment, retention, and workforce readiness of students. The Bucks+ program focuses on student engagement through competition within curriculum, and extracurricular endeavors that prepare students for industry. We will share our successes and challenges within our call to action to engage students in a remote world and to enhance their educational experience through innovative instructional techniques. 
    more » « less