skip to main content


Title: Crystal structures of two new six-coordinate iron(III) complexes with 1,2-bis(diphenylphosphane) ligands
Structural characterization of the ionic complexes [FeCl 2 (C 26 H 22 P 2 ) 2 ][FeCl 4 ]·0.59CH 2 Cl 2 or [(dppen) 2 FeCl 2 ][FeCl 4 ]·0.59CH 2 Cl 2 (dppen = cis -1,2-bis(diphenylphosphane)ethylene, P 2 C 26 H 22 ) and [FeCl 2 (C 30 H 24 P 2 ) 2 ][FeCl 4 ]·CH 2 Cl 2 or [(dpbz) 2 FeCl 2 ][FeCl 4 ]·CH 2 Cl 2 (dpbz = 1,2-bis(diphenylphosphane)benzene, P 2 C 30 H 24 ) demonstrates trans coordination of two bidentate phosphane ligands (bisphosphanes) to a single iron(III) center, resulting in six-coordinate cationic complexes that are balanced in charge by tetrachloridoferrate(III) monoanions. The trans bisphosphane coordination is consistent will all previously reported molecular structures of six coordinate iron(III) complex cations with a (PP) 2 X 2 ( X = halido) donor set. The complex with dppen crystallizes in the centrosymmetric space group C 2/ c as a partial-occupancy [0.592 (4)] dichloromethane solvate, while the dpbz-ligated complex crystallizes in the triclinic space group P 1 as a full dichloromethane monosolvate. Furthermore, the crystal studied of [(dpbz) 2 FeCl 2 ][FeCl 4 ]·CH 2 Cl 2 was an inversion twin, whose component mass ratio refined to 0.76 (3):0.24 (3). Beyond a few very weak C—H...Cl and C—H...π interactions, there are no significant supramolecular features in either structure.  more » « less
Award ID(s):
1649228
NSF-PAR ID:
10080465
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Acta Crystallographica Section E Crystallographic Communications
Volume:
74
Issue:
6
ISSN:
2056-9890
Page Range / eLocation ID:
803 to 807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural analyses of the compounds di-μ-acetato-κ 4 O : O ′-bis{[2-methoxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate, [Mn 2 (C 23 O 2 ) 2 (C 23 H 23 N 3 O) 2 ](C 24 H 20 B)·1.45CH 2 Cl 2 or [Mn(DQMEA)(μ-OAc) 2 Mn(DQMEA)](BPh 4 ) 2 ·1.45CH 2 Cl 2 or [1] (BPh 4 ) 2 ·1.45CH 2 Cl 2 , and (acetato-κ O )[2-hydroxy- N , N -bis(quinolin-2-ylmethyl)ethanamine-κ 4 N , N ′, N ′′, O ](methanol-κ O )manganese(II) tetraphenylborate methanol monosolvate, [Mn(CH 3 COO)(C 22 H 21 N 3 O)(CH 3 OH)](C 24 H 20 B)·CH 3 OH or [Mn(DQEA)(OAc)(CH 3 OH)]BPh 4 ·CH 3 OH or [2] BPh 4 ·CH 3 OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to Mn II ions. In the asymmetric unit, compound [1] (BPh 4 ) 2 ·(CH 2 Cl 2 ) 1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitrogen, the nitrogen atom of each quinoline group, and the methoxy-oxygen of the tetradentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric Mn II centers have a distorted, octahedral geometry in which the quinoline nitrogen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each Mn II center, a coordinated acetate oxygen participates in C—H...O hydrogen-bonding interactions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak π – π stacking interactions and intermolecular cation–anion interactions stabilize the crystal packing. In the asymmetric unit, compound [2] BPh 4 ·CH 3 OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitrogen, the nitrogen atom of each quinoline group, and the alcohol oxygen of the tetradentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the Mn II center in [2] BPh 4 ·CH 3 OH is also a distorted octahedron, but the quinoline nitrogen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H...O) and quinolyl (C—H...O and N—H...O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of intermolecular O3—H3...O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and intermolecular cation–anion interactions contribute to the crystal packing. 
    more » « less
  2. Reported in this contribution are the synthesis and crystal structures of two new Fe III complexes of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (HMC), namely, dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) chloride, [FeCl 2 (C 16 H 36 N 4 )]Cl or cis -[FeCl 2 ( rac -HMC)]Cl ( 1 ), and dichlorido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)iron(III) tetrachloridoferrate, [FeCl 2 (C 16 H 36 N 4 )][FeCl 4 ] or trans -[FeCl 2 ( meso -HMC)][FeCl 4 ] ( 2 ). Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octahedral geometry, where the macrocycles adopt folded and planar geometries, respectively. The chloride ligands in 1 are cis to each other, while those in 2 have a trans configuration. The relevant bond angles in 1 deviate substantially from an ideal octahedral coordination geometry, with the angles between the cis substituents varying from 81.55 (5) to 107.56 (4)°, and those between the trans -ligating atoms varying from 157.76 (8) to 170.88 (3)°. In contrast, 2 adopts a less strained configuration, in which the N—Fe—N angles vary from 84.61 (8) to 95.39 (8)° and the N—Fe—Cl angles vary from 86.02 (5) to 93.98 (5)°. 
    more » « less
  3. Both trans and cis iron–CTMC complexes, namely, trans -dichlorido[(5 SR ,7 RS ,12 RS ,14 SR )-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) tetrachloridoferrate, [Fe(C 14 H 32 N 4 )Cl 2 ][FeCl 4 ] ( 1a ), the analogous chloride methanol monosolvate, [Fe(C 14 H 32 N 4 )Cl 2 ]Cl·CH 3 OH ( 1b ), and cis -dichlorido[(5 SR ,7 RS ,12 SR ,14 RS )-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) chloride, [Fe(C 14 H 32 N 4 )Cl 2 ]Cl ( 2 ), were successfully synthesized and structurally characterized using X-ray diffraction. The coordination geometry of the macrocycle is dependent on the stereoisomerism of CTMC. The packing of these complexes appears to be strongly influenced by extensive hydrogen-bonding interactions, which are in turn determined by the nature of the counter-anions ( 1a versus 1b ) and/or the coordination geometry of the macrocycle ( 1a/1b versus 2 ). These observations are extended to related ferric cis - and trans- dichloro macrocyclic complexes. 
    more » « less
  4. Abstract

    A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry.

     
    more » « less
  5. Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state. 
    more » « less