skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Synthesis, reactivity, structures, and dynamic properties of gyroscope like iron complexes with dibridgehead diphosphine cages: pre- vs. post-metathesis substitutions as routes to adducts with neutral dipolar Fe(CO)(NO)(X) rotors
Three routes are explored to the title halide/cyanide complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) 14 ) 3 P) ( 9c-X ; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (Δ H ‡ /Δ S ‡ (kcal mol −1 /eu −1 ) 5.9/−20.4 and 7.4/−23.9 for 9c-Cl and 9c-I from variable temperature 13 C NMR spectra). First, reactions of the known cationic complex trans -[Fe(CO) 2 (NO)(P((CH 2 ) 14 ) 3 P)] + BF 4 − and Bu 4 N + X − give 9c-Cl /- Br /- I /- CN (75–83%). Second, reactions of the acyclic complexes trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH 2 ) 3 ) 2 and Grubbs’ catalyst afford the tris(cycloalkenes) trans -Fe(CO)(NO)(X)(P((CH 2 ) m CHCH(CH 2 ) m ) 3 P) ( m /X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z / E isomers (24–41%). Third, similar reactions of trans -[Fe(CO) 2 (NO)(P((CH 2 ) m CHCH 2 ) 3 ) 2 ] + BF 4 − and Grubbs’ catalyst afford crude trans -[Fe(CO) 2 (NO)P((CH 2 ) m CHCH(CH 2 ) m ) 3 P)] + BF 4 − ( m = 6, 8). However, the CC hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl /- Br /- CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P–Fe–P axes, and without intermolecular impediments to rotation in the solid state.  more » « less
Award ID(s):
0719267 1153085 1566601
NSF-PAR ID:
10163881
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
45
Issue:
41
ISSN:
1477-9226
Page Range / eLocation ID:
16190 to 16204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 ac; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out4 ca′and a conformer ofin,out4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared.

     
    more » « less
  2. Two routes to the title compounds are evaluated. First, a ca. 0.01 M CH 2 Cl 2 solution of H 3 B·P((CH 2 ) 6 CH=CH 2 ) 3 ( 1 ·BH 3 ) is treated with 5 mol % of Grubbs' first generation catalyst (0 °C to reflux), followed by H 2 (5 bar) and Wilkinson's catalyst (55 °C). Column chromatography affords H 3 B·P( n- C 8 H 17 ) 3 (1%), H 3 B· P ((CH 2 ) 13 C H 2 )( n -C 8 H 17 ) (8%; see text for tie bars that indicate additional phosphorus–carbon linkages, which are coded in the abstract with italics), H 3 B· P ((CH 2 ) 13 C H 2 )((CH 2 ) 14 ) P ((CH 2 ) 13 C H 2 )·BH 3 ( 6 ·2BH 3 , 10%), in,out -H 3 B·P((CH 2 ) 14 ) 3 P·BH 3 ( in,out - 2 ·2BH 3 , 4%) and the stereoisomer ( in,in / out,out )- 2 ·2BH 3 (2%). Four of these structures are verified by independent syntheses. Second, 1,14-tetradecanedioic acid is converted (reduction, bromination, Arbuzov reaction, LiAlH 4 ) to H 2 P((CH 2 ) 14 )PH 2 ( 10 ; 76% overall yield). The reaction with H 3 B·SMe 2 gives 10 ·2BH 3 , which is treated with n -BuLi (4.4 equiv) and Br(CH 2 ) 6 CH=CH 2 (4.0 equiv) to afford the tetraalkenyl precursor (H 2 C=CH(CH 2 ) 6 ) 2 (H 3 B)P((CH 2 ) 14 )P(BH 3 )((CH 2 ) 6 CH=CH 2 ) 2 ( 11 ·2BH 3 ; 18%). Alternative approaches to 11 ·2BH 3 (e.g., via 11 ) were unsuccessful. An analogous metathesis/hydrogenation/chromatography sequence with 11 ·2BH 3 (0.0010 M in CH 2 Cl 2 ) gives 6 ·2BH 3 (5%), in,out - 2 ·2BH 3 (6%), and ( in,in / out,out )- 2 ·2BH 3 (7%). Despite the doubled yield of 2 ·2BH 3 , the longer synthesis of 11 ·2BH 3 vs 1 ·BH 3 renders the two routes a toss-up; neither compares favorably with precious metal templated syntheses. 
    more » « less
  3. C–H functionalization of undecahalogenated carborane anions, [HCB 11 X 11 − ] (X = Cl, Br, I), is performed with Cs 2 CO 3 in acetonitrile. We show that the requisite Cl, Br and I carborane dianions can all be efficiently accessed with Cs 2 CO 3 . The utilization of Cs 2 CO 3 eliminates the complications associated with competing E2 elimination reactions providing an efficient, more functional group tolerant, and broader scope than previously reported. The ensuing functionalized cages provide potential synthons for constructing advanced materials and other molecular architectures for various applications. 
    more » « less
  4. Reactions of trans-[[upper bond 1 start]Fe(CO)2(NO)(As((CH2)n)3As[upper bond 1 end])]+ BF4− (n = 10, 12, 14) and Bu4N+ Cl− afford the title compounds As((CH2)n)3As, which upon reaction (n = 14) with MCl2 (M = Pt, Ni), Rh(CO)(Cl), and Fe(CO)3 sources reconstitute cage like complexes trans-[upper bond 1 start]MLn(As((CH2)14)3A[upper bond 1 end]s). Reactions with H2O2 and BH3 give the corresponding arsine oxides and boranes. Crystal structures of metal-free species reveal out,out isomers, but cage complex formation is proposed to entail homeomorphic isomerization to in,in isomers with endo directed lone pairs. 
    more » « less
  5. Cyanide, as an ambidentate ligand, plays a pivotal role in providing a simple diatomic building-block motif for controlled metal aggregation (M–CN–M′). Specifically, the inherent hard–soft nature of the cyanide ligand, i.e. , hard-nitrogen and soft-carbon centers, is due to electronic handles for binding Lewis acids following the hard–soft acid–base principle. Studies by Holm and Karlin showed structural and electronic requirements for cyanide-bridged (por)Fe III –CN–Cu II/I (por = porphyrin) molecular assemblies as biomimetics for cyanide-inhibited terminal quinol oxidases and cytochrome-C oxidase. The dinitrosyliron unit (DNIU) that exists in two redox states, {Fe(NO) 2 } 9 and {Fe(NO) 2 } 10 , draws attention as an electronic analogy of Cu II and Cu I , d 9 and d 10 , respectively. In similar controlled aggregations, L-type [(η 5 -C 5 R 5 )Fe(dppe)(CN)] (dppe = diphenyl phosphinoethane; R = H and Me) have been used as N-donor, μ-cyanoiron metalloligands to stabilize the DNIU in two redox states. Two bimetallic [(η 5 -C 5 R 5 )(dppe)Fe II –CN–{Fe(NO) 2 } 9 (sIMes)][BF 4 ] complexes, Fe-1 (R = H) and Fe*-1 (R = CH 3 ), showed dissimilar Fe II CN–{Fe(NO) 2 } 9 angular bends due to the electronic donor properties of the [(η 5 -C 5 R 5 )Fe(dppe)(CN)] μ-cyanoiron metalloligand. A trimetallic [(η 5 -C 5 Me 5 )(dppe)Fe II –CN] 2 –{Fe(NO) 2 } 10 complex, Fe*-2 , engaged two bridging μ-cyanoiron metalloligands to stabilize the {Fe(NO) 2 } 10 unit. The lability of the Fe II –CN–{Fe(NO) 2 } 9/10 bond was probed by suitable X-type (Na + SPh − ) and L-type (PMe 3 ) ligands. Treatment of Fe-1 and Fe*-1 with PMe 3 accounted for a reduction-induced substitution at the DNIU, releasing [(η 5 -C 5 R 5 )Fe(dppe)(CN)] and N-heterocyclic carbene, and generating (PMe 3 ) 2 Fe(NO) 2 as the reduced {Fe(NO) 2 } 10 product. 
    more » « less