Motivated by the significantly higher cost of writing than reading in emerging memory technologies, we consider parallel algorithm design under such asymmetric read-write costs, with the goal of reducing the number of writes while preserving work-efficiency and low span. We present a nested-parallel model of computation that combines (i) small per-task stack-allocated memories with symmetric read-write costs and (ii) an unbounded heap-allocated shared memory with asymmetric read-write costs, and show how the costs in the model map efficiently onto a more concrete machine model under a work-stealing scheduler. We use the new model to design reduced write, work-efficient, low span parallel algorithms for a number of fundamental problems such as reduce, list contraction, tree contraction, breadth-first search, ordered filter, and planar convex hull. For the latter two problems, our algorithms are output-sensitive in that the work and number of writes decrease with the output size. We also present a reduced write, low span minimum spanning tree algorithm that is nearly work-efficient (off by the inverse Ackermann function). Our algorithms reveal several interesting techniques for significantly reducing shared memory writes in parallel algorithms without asymptotically increasing the number of shared memory reads.
Parallel Write-Efficient Algorithms and Data Structures for Computational Geometry
In this paper, we design parallel write-efficient geometric algorithms
that perform asymptotically fewer writes than standard
algorithms for the same problem. This is motivated by emerging
non-volatile memory technologies with read performance being
close to that of random access memory but writes being significantly
more expensive in terms of energy and latency. We design
algorithms for planar Delaunay triangulation, k-d trees, and static
and dynamic augmented trees. Our algorithms are designed in
the recently introduced Asymmetric Nested-Parallel Model, which
captures the parallel setting in which there is a small symmetric
memory where reads and writes are unit cost as well as a large
asymmetric memory where writes are ω times more expensive
than reads. In designing these algorithms, we introduce several
techniques for obtaining write-efficiency, including DAG tracing,
prefix doubling, and α-labeling, which we believe will be useful for
designing other parallel write-efficient algorithms.
- Award ID(s):
- 1533858
- Publication Date:
- NSF-PAR ID:
- 10080526
- Journal Name:
- ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
- Volume:
- 30
- Page Range or eLocation-ID:
- 235 to 246
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The future of main memory appears to lie in the direction of new non-volatile memory technologies that provide strong capacity-to-performance ratios, but have write operations that are much more expensive than reads in terms of energy, bandwidth, and latency. This asymmetry can have a significant effect on algorithm design, and in many cases it is possible to reduce writes at the cost of more reads. This paper studies which algorithmic techniques are useful in designing practical write-efficient algorithms. We focus on several fundamental algorithmic building blocks including unordered set/map implemented using hash tables, comparison sort, and graph traversal algorithms including breadth-first search and Dijkstra’s algorithm. We introduce new algorithms and implementations that can reduce writes, and analyze the performance experimentally using a software simulator. Finally, we summarize interesting lessons and directions in designing write-efficient algorithms that can be valuable to share.
-
In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fundamentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We consider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M,w)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost w >> 1. For FFT and sorting networks we show a lower bound cost of Omega(w*n*log_{w*M}(n)), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when w is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(w,log(n)/log(w*M)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also showmore »
-
Shared register emulations on top of message- passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read to write ratio. Thus having algorithms that make reads more efficient than writes is a fair trade-off. Typically such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like “strong consistency” or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the all or none property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete. This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. More- over, we provide fast reads or one-shot reads – our read operation can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more serversmore »
-
Obeid, Iyad Selesnick (Ed.)Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »