skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Motivated misreporting in crowdsourcing: Data quality concerns for scientific tasks
Crowdsourcing has become a popular means to solicit assistance for scientific research. From classifying images or texts to responding to surveys, tapping into the knowledge of crowds to complete complex tasks has become a common strategy in social and information sciences. Although the timeliness and cost-effectiveness of crowdsourcing may provide desirable advantages to researchers, the data it generates may be of lower quality for some scientific purposes. The quality control mechanisms, if any, offered by common crowdsourcing platforms may not provide robust measures of data quality. This study explores whether research task participants may engage in motivated misreporting whereby participants tend to cut corners to reduce their workload while performing various scientific tasks online. We conducted an experiment with three common crowdsourcing tasks: answering surveys, coding images, and classifying online social media content. The experiment recruited workers from three sources: a crowdsourcing platform (Amazon Mechanical Turk) and a commercial online survey panel. The analysis seeks to address the following two questions: (1) whether online panelists or crowd workers may engage in motivated misreporting differently and (2) whether the patterns of misreporting vary by different task types. The study focuses on the analysis of the experiment in answering surveys and offers quality assurance practice guideline of using crowdsourcing for social science research.  more » « less
Award ID(s):
1645307
PAR ID:
10080559
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The 73th Annual Conference of the American Association for Public Opinion Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Targeting the right group of workers for crowdsourcing often achieves better quality results. One unique example of targeted crowdsourcing is seeking community-situated workers whose familiarity with the background and the norms of a particular group can help produce better outcome or accuracy. These community-situated crowd workers can be recruited in different ways from generic online crowdsourcing platforms or from online recovery communities. We evaluate three different approaches to recruit generic and community-situated crowd in terms of the time and the cost of recruitment, and the accuracy of task completion. We consider the context of Alcoholics Anonymous (AA), the largest peer support group for recovering alcoholics, and the task of identifying and validating AA meeting information. We discuss the benefits and trade-offs of recruiting paid vs. unpaid community-situated workers and provide implications for future research in the recovery context and relevant domains of HCI, and for the design of crowdsourcing ICT systems. 
    more » « less
  2. Crowdsourcing has become an efficient paradigm to utilize human intelligence to perform tasks that are challenging for machines. Many incentive mechanisms for crowdsourcing systems have been proposed. However, most of existing incentive mechanisms assume that there are sufficient participants to perform crowdsourcing tasks. In large-scale crowdsourcing scenarios, this assumption may be not applicable. To address this issue, we diffuse the crowdsourcing tasks in social network to increase the number of participants. To make the task diffusion more applicable to crowdsourcing system, we enhance the classic Independent Cascade model so the influence is strongly connected with both the types and topics of tasks. Based on the tailored task diffusion model, we formulate the Budget Feasible Task Diffusion ( BFTD ) problem for maximizing the value function of platform with constrained budget. We design a parameter estimation algorithm based on Expectation Maximization algorithm to estimate the parameters in proposed task diffusion model. Benefitting from the submodular property of the objective function, we apply the budget-feasible incentive mechanism, which satisfies desirable properties of computational efficiency, individual rationality, budget-feasible, truthfulness, and guaranteed approximation, to stimulate the task diffusers. The simulation results based on two real-world datasets show that our incentive mechanism can improve the number of active users and the task completion rate by 9.8% and 11%, on average. 
    more » « less
  3. Citizen science projects have successfully taken advantage of volunteers to unlock scientific information contained in images. Crowds extract scientific data by completing different types of activities: transcribing text, selecting values from pre-defined options, reading data aloud, or pointing and clicking at graphical elements. While designing crowdsourcing tasks, selecting the best form of input and task granularity is essential for keeping the volunteers engaged and maximizing the quality of the results. In the context of biocollections information extraction, this study compares three interface actions (transcribe, select, and crop) and tasks of different levels of granularity (single field vs. compound tasks). Using 30 crowdsourcing experiments and two different populations, these interface alternatives are evaluated in terms of speed, quality, perceived difficulty and enjoyability. The results show that Selection and Transcription tasks generate high quality output, but they are perceived as boring. Conversely, Cropping tasks, and arguably graphical tasks in general, are more enjoyable, but their output quality depend on additional machine-oriented processing. When the text to be extracted is longer than two or three words, Transcription is slower than Selection and Cropping. When using compound tasks, the overall time required for the crowdsourcing experiment is considerably shorter than using single field tasks, but they are perceived as more difficult. When using single field tasks, both the quality of the output and the amount of identified data are slightly higher compared to compound tasks, but they are perceived by the crowd as less entertaining. 
    more » « less
  4. Dialog system developers need high-quality data to train, fine-tune and assess their systems. They often use crowdsourcing for this since it provides large quantities of data from many workers. However, the data may not be of sufficiently good quality. This can be due to the way that the requester presents a task and how they interact with the workers. This paper introduces DialCrowd 2.0 to help requesters obtain higher quality data by, for example, presenting tasks more clearly and facilitating effective communication with workers. DialCrowd 2.0 guides developers in creating improved Human Intelligence Tasks (HITs) and is directly applicable to the workflows used currently by developers and researchers. 
    more » « less
  5. Efficient allocation of tasks to workers is a central problem in crowdsourcing. In this paper, we consider a special setting inspired by spatial crowdsourcing platforms where both workers and tasks arrive dynamically. Additionally, we assume all tasks are heterogeneous and each worker-task assignment brings a known reward. The natural challenge lies in how to incorporate the uncertainty in the arrivals from both workers and tasks into our online allocation policy such that the total expected reward is maximized. To formulate this, we assume the arrival patterns of worker “types” and task “types” can be predicted from historical data. Specifically, we consider a finite time horizon T and assume that in each time-step, a single worker and task are sampled (i.e., “arrive”) from two respective distributions independently, and that this sampling process repeats identically and independently for the entire T online time-steps. Our model, called Online Task Assignment with Two-Sided Arrival (OTA-TSA), is a significant generalization of the classical online task assignment where the set of tasks is assumed to be available offline. For the general version of OTA-TSA, we present an optimal non-adaptive algorithm which achieves an online competitive ratio of 0.295. For the special case of OTA-TSA where the reward is a function of just the worker type, we present an improved algorithm (which is adaptive) and achieves a competitive ratio of at least 0.343. On the hardness side, along with showing that the ratio obtained by our non-adaptive algorithm is the best possible among all non-adaptive algorithms, we further show that no (adaptive) algorithm can achieve a ratio better than 0.581 (unconditionally), even for the special case of OTA-TSA with homogenous tasks (i.e., all rewards are the same). At the heart of our analysis lies a new technical tool (which is a refined notion of the birth-death process), called the two-stage birth-death process, which may be of independent interest. Finally, we perform numerical experiments on two real-world datasets obtained from crowdsourcing platforms to complement our theoretical results. 
    more » « less