skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comment on Effective Field Theories of Flux Vacua
Abstract We discuss some basic aspects of effective field theory applied to supergravity theories which arise in the low‐energy limit of string theory. Our discussion is particularly relevant to the effective field theories of no‐scale supergravities that break supersymmetry, including those that appear in constructing de Sitter solutions of string theory.  more » « less
Award ID(s):
1720397
PAR ID:
10080694
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
67
Issue:
1-2
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We explore the symmetry structure of Type II Little String Theories and their T-dualities. We construct these theories both from the bottom-up perspective starting with seed Superconformal Field Theories, and from the top-down using F-/M-theory. By exploiting anomaly inflow and unitarity of the LST worldsheet theory, we derive strong conditions on the possible 6D bulk theories and their flavor algebras. These constraints continue to apply if gravity is coupled to the theory. We also study the higher form symmetry structure of these theories and show how they get exchanged under T-duality. Finally, we comment on seemingly consistent bottom-up Little String Theories that cannot be constructed from the top-down approach. 
    more » « less
  2. A<sc>bstract</sc> We use insights from string field theory to analyze and cure the divergences in the cylinder diagram in minimal string theory with both boundaries lying on a ZZ brane. We focus on theories with worldsheet matter consisting of the (2, p) minimal model plus Liouville theory, with total central charge 26, together with the usualbc-ghosts. The string field theory procedure gives a finite, purely imaginary normalization constant for non-perturbative effects in minimal string theory, or doubly non-perturbative effects in JT gravity. We find precise agreement with the prediction from the dual double-scaled one-matrix integral. We also make a few remarks about the extension of this result to the more general (p′, p) minimal string. 
    more » « less
  3. A bstract We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F 2 ∧ H 3 and tr( $$ {F}_2^2 $$ F 2 2 ), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity. 
    more » « less
  4. It was recently argued by Nguyen, Tanizaki and Ünsal that two-dimensional pure Yang–Mills theory is equivalent to (decomposes into) a disjoint union of (invertible) quantum field theories, known as universes. In this paper, we compare this decomposition to the Gross–Taylor expansion of two-dimensional pure [Formula: see text] Yang–Mills theory in the large-[Formula: see text] limit as the string field theory of a sigma model. Specifically, we study the Gross–Taylor expansion of individual Nguyen–Tanizaki–Ünsal universes. These differ from the Gross–Taylor expansion of the full Yang–Mills theory in two ways: a restriction to single instanton degrees, and some additional contributions not present in the expansion of the full Yang–Mills theory. We propose to interpret the restriction to single instanton degrees as implying a constraint, namely that the Gross–Taylor string has a global (higher-form) symmetry with Noether current related to the worldsheet instanton number. We compare two-dimensional pure Maxwell theory as a prototype obeying such a constraint, and also discuss in that case an analogue of the Witten effect arising under two-dimensional theta angle rotation. We also propose a geometric interpretation of the additional terms, in the special case of Yang–Mills theories on 2-spheres. In addition, also for the case of theories on 2-spheres, we propose a reinterpretation of the terms in the Gross–Taylor expansion of the Nguyen–Tanizaki–Ünsal universes, replacing sigma models on branched covers by counting disjoint unions of stacky copies of the target Riemann surface, that makes the Nguyen–Tanizaki–Ünsal decomposition into invertible field theories more nearly manifest. As the Gross–Taylor string is a sigma model coupled to worldsheet gravity, we also briefly outline the tangentially related topic of decomposition in two-dimensional theories coupled to gravity. 
    more » « less
  5. A<sc>bstract</sc> We explore the T-duality web of 6D Heterotic Little String Theories, focusing on flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new T-duality invariant in addition to the Coulomb branch dimension and the two-group structure constants. We also engineer Little String Theories with non-simply laced flavor algebras, whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically, these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way, we discuss various exotic models, including two inequivalent Spin(32)/ℤ2models that are dual to the same E8× E8theory, and a family of self-T-dual models. 
    more » « less