A<sc>bstract</sc> We explore the T-duality web of 6D Heterotic Little String Theories, focusing on flavor algebra reducing deformations. A careful analysis of the full flavor algebra, including Abelian factors, shows that the flavor rank is preserved under T-duality. This suggests a new T-duality invariant in addition to the Coulomb branch dimension and the two-group structure constants. We also engineer Little String Theories with non-simply laced flavor algebras, whose appearance we attribute to certain discrete 3-form fluxes in M-theory. Geometrically, these theories are engineered in F-theory with non-Kähler favorable K3 fibers. This geometric origin leads us to propose that freezing fluxes are preserved across T-duality. Along the way, we discuss various exotic models, including two inequivalent Spin(32)/ℤ2models that are dual to the same E8× E8theory, and a family of self-T-dual models.
more »
« less
This content will become publicly available on November 1, 2025
Bounds and dualities of Type II Little String Theories
A<sc>bstract</sc> We explore the symmetry structure of Type II Little String Theories and their T-dualities. We construct these theories both from the bottom-up perspective starting with seed Superconformal Field Theories, and from the top-down using F-/M-theory. By exploiting anomaly inflow and unitarity of the LST worldsheet theory, we derive strong conditions on the possible 6D bulk theories and their flavor algebras. These constraints continue to apply if gravity is coupled to the theory. We also study the higher form symmetry structure of these theories and show how they get exchanged under T-duality. Finally, we comment on seemingly consistent bottom-up Little String Theories that cannot be constructed from the top-down approach.
more »
« less
- PAR ID:
- 10570059
- Publisher / Repository:
- Springer Nature Link
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 11
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We study a class of supersymmetric Froggatt-Nielsen (FN) models with multiple U(1) symmetries and Standard Model (SM) singlets inspired by heterotic string compactifications on Calabi-Yau threefolds. The string-theoretic origin imposes a particular charge pattern on the SM fields and FN singlets, dividing the latter into perturbative and non-perturbative types. Employing systematic and heuristic search strategies, such as genetic algorithms, we identify charge assignments and singlet VEVs that replicate the observed mass and mixing hierarchies in the quark sector, and subsequently refine the Yukawa matrix coefficients to accurately match the observed values for the Higgs VEV, the quark and charged lepton masses and the CKM matrix. This bottom-up approach complements top-down string constructions and our results demonstrate that string FN models possess a sufficiently rich structure to account for flavour physics. On the other hand, the limited number of distinct viable charge patterns identified here indicates that flavour physics imposes tight constraints on string theory models, adding new constraints on particle spectra that are essential for achieving a realistic phenomenology.more » « less
-
A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over T∗M, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries.more » « less
-
A<sc>bstract</sc> We study the duality between the Spin(32)/ℤ2heterotic string without vector structure and F-theory with frozen singularities. We give a complete description in theories with 6d$$ \mathcal{N} $$ = (1, 0) supersymmetry and identify the duals of Spin(32)/ℤ2-instantons on ADE singularities without vector structure in the frozen phase of F-theory using an ansatz introduced by Bhardwaj, Morrison, Tachikawa, and Tomasiello. As a consequence, we obtain a strongly coupled description of orbifold phases of type I string theory without vector structure, substantially expanding the list of known examples of 6d F-theory compactifications with frozen singularities. Supergravity theories can befusedfrom these instanton theories, in a way that commutes with switching off vector structure, which we use to propose new consistency checks via neutral hypermultiplet counting. Finally, we describe various Higgsings of this duality, and comment on constraints on higher form symmetries.more » « less
-
Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1×ℙ1), and ℂ4/ℤ4 geometries.more » « less
An official website of the United States government
