Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
                        more » 
                        « less   
                    
                            
                            Electrical and optical properties of nickel-doped Ge2Sb2Te5 films produced by magnetron co-sputtering
                        
                    
    
            A magnetron co-sputtering system was used for producing nickel-doped Ge2Sb2Te5 (GST-Ni) thin films. The nickel content in the thin film was adjusted by the ratio of the plasma discharge power applied to the GST and nickel targets, as well as a physical shuttering technique to further control the nickel deposition rate. The doping concentration of the film was con firmed using Energy Dispersion Spectroscopy (EDS) technique. Results from a four-point probe measurement indicate that the nickel doping can reduce the resistivity of GST in the amorphous state by nearly three orders of magnitude. The dopant's influence on crystallization behavior was studied by analyzing X-Ray Diffraction (XRD) patterns of the pure GST and GST-Ni at different annealing temperatures. To examine the structural changes due to the nickel dopant, the thin films were investigated with the aid of Raman scattering. Additionally, we extracted the optical constants for both the amorphous and crystalline states of undoped-GST and GST-Ni films by ellipsometry. The results indicate that at low doping concentrations nickel does not appreciably affect the optical constants, but dramatically improves the electrical conductivity. Therefore, nickel-doping of GST a viable method for designing optical devices for lower operating voltages at higher switching speeds. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1710273
- PAR ID:
- 10080769
- Date Published:
- Journal Name:
- Proceedings of SPIE, Nanoengineering: Fabrication, Properties, Optics, and Devices XV
- Volume:
- 10730
- Issue:
- 107300L
- Page Range / eLocation ID:
- 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Nickel and aluminum ohmic contacts were formed on p-doped GeC and GeCSn epitaxial films with ∼1%C. When a 40 nm p-GeC contact layer was added to p-Ge, annealed contact resistivity (Rc) dropped by 87% to 9.3 × 10−7 Ω cm2 for Al but increased by 32% to 2.9 × 10−5 Ω cm2 for Ni. On the other hand, thick films of GeCSn, which showed lower active doping, had contact resistivities of 4.4 × 10−6 Ω cm2 for Al and 1.4 × 10−5 Ω cm2 for Ni. In general, Al contacts were better than Ni, regardless of anneal, and were further improved by adding carbon. Annealing reduced Rc for both Ni and Al contacts to GeCSn by 4×, 2× for Al on GeC, and 5 orders of magnitude for Ni on GeC. It is speculated that C forms bonds with Ni that inhibit diffusion of Ni into the Ge, thus preventing the formation of low-resistance nickel germanide. Adding C, either as bulk GeCSn or as GeC contact layers, seems to significantly reduce the contact resistivity for Al contacts when compared to bulk Ge of comparable doping.more » « less
- 
            Abstract This study investigates the presence of titanium oxynitride bonds in titanium dioxide (TiO2) thin films grown by atomic layer deposition (ALD) using tetrakis dimethyl amino titanium (TDMAT) and water at temperatures between 150 and 350 °C and its effect on the films’ optical and electrical properties. Compositional analysis using X‐ray photoelectron spectroscopy (XPS) reveals increased incorporation of oxynitride bonds as the process temperature increases. Furthermore, depth profile data demonstrates an increase in the abundance of this type of bonding from the surface to the bulk of the films. Ultraviolet‐visible spectroscopy (UV‐vis) measurements correlate increased visible light absorption for the films with elevated oxynitride incorporation. The optical constants (n, k) of the films show a pronounced dependence on the process temperature that is mirrored in the film conductivity. The detection of oxynitride bonding suggests a secondary reaction pathway in this well‐established ALD process chemistry, that may impact film properties. These findings indicate that the choice of process chemistry and conditions can be used to optimize film properties for optoelectronic applications.more » « less
- 
            We calculate critical electronic conduction parameters of the amorphous phase of Ge 2 Sb 2 Te 5 (GST), a common material used in phase change memory. We estimate the room temperature bandgap of metastable amorphous GST to be E g (300K) = 1.84 eV based on a temperature dependent energy band model. We estimate the free carrier concentration at the melting temperature utilizing the latent heat of fusion to be 1.47 x 10 22 cm -3 . Using the thin film melt resistivity, we calculate the carrier mobility at melting point as 0.187 cm 2 /V-s. Assuming that metastable amorphous GST is a supercooled liquid with bipolar conduction, we compute the total carrier concentration as a function of temperature and estimate the room temperature free carrier concentration as p(300K) ≈ n(300K) = 1.69×10 17 cm -3 . Free electrons and holes are expected to recombine over time and the stable (drifted) amorphous GST is estimated to have p-type conduction with p(300K) ≈ 6×10 16 cm -3 .more » « less
- 
            ABSTRACT Polydopamine (PDA) is a biopolymer, which can form uniform thin films on almost all solid substrates as well as at the liquid/air interface. Carbonized polydopamine possesses graphite-like structure and exhibits high electrical conductivity, which makes it a potential carbon-based thin film conductor. However, studies on mechanical behavior of PDA and its derived materials are very limited. In this study, PDA samples were synthesized through self-assembly of dopamine in aqueous solution. Elastic modulus of thin films was measured using the nanoindentation technique. It is shown that the Young’s modulus of PDA thin film increased with increasing heat treatment temperature (up to 600°C). Doping with Cu ions also increased the Young’s modulus of PDA. Furthermore, all PDA thin films, with and without Cu, exhibited creep behavior.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    