skip to main content


Title: Dissipativity Theory for Accelerating Stochastic Variance Reduction: A Unified Analysis of SVRG and Katyusha Using Semidefinite Programs
Techniques for reducing the variance of gradient estimates used in stochastic programming algorithms for convex finite-sum problems have received a great deal of attention in recent years. By leveraging dissipativity theory from control, we provide a new perspective on two important variance-reduction algorithms: SVRG and its direct accelerated variant Katyusha. Our perspective provides a physically intuitive understanding of the behavior of SVRG-like methods via a principle of energy conservation. The tools discussed here allow us to automate the convergence analysis of SVRG-like methods by capturing their essential properties in small semidefinite programs amenable to standard analysis and computational techniques. Our approach recovers existing convergence results for SVRG and Katyusha and generalizes the theory to alternative parameter choices. We also discuss how our approach complements the linear coupling technique. Our combination of perspectives leads to a better understanding of accelerated variance-reduced stochastic methods for finite-sum problems.  more » « less
Award ID(s):
1750162 1656951
NSF-PAR ID:
10080864
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
80
Page Range / eLocation ID:
2038-2047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variance reduction techniques like SVRG provide simple and fast algorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order stationary point (with small gradient). However, in nonconvex optimization it is often crucial to find a second-order stationary point (with small gradient and almost PSD hessian). In this paper, we show that Stabilized SVRG (a simple variant of SVRG) can find an \eps-second-order stationary point using only O(n^{2/3}/\eps^2+n/\eps^{1.5}) stochastic gradients. To our best knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running time almost matches the known guarantees for finding \eps-first-order stationary points. 
    more » « less
  2. We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems. 
    more » « less
  3. This paper introduces a new proximal stochastic gradient method with variance reduction and stabilization for minimizing the sum of a convex stochastic function and a group sparsity-inducing regularization function. Since the method may be viewed as a stabilized version of the recently proposed algorithm \pstorm{}, we call our algorithm \spstorm{}. Our analysis shows that \spstorm{} has strong convergence results. In particular, we prove an upper bound on the number of iterations required by \spstorm{} before its iterates correctly identify (with high probability) an optimal support (i.e., the zero and nonzero structure of an optimal solution). Most algorithms in the literature with such a support identification property use variance reduction techniques that require either periodically evaluating an \emph{exact} gradient or storing a history of stochastic gradients. Unlike these methods, \spstorm{} achieves variance reduction without requiring either of these, which is advantageous. Moreover, our support-identification result for \spstorm{} shows that, with high probability, an optimal support will be identified correctly in \emph{all} iterations with index above a threshold. We believe that this type of result is new to the literature since the few existing other results prove that the optimal support is identified with high probability at each iteration with a sufficiently large index (meaning that the optimal support might be identified in some iterations, but not in others). Numerical experiments on regularized logistic loss problems show that \spstorm{} outperforms existing methods in various metrics that measure how efficiently and robustly iterates of an algorithm identify an optimal support. 
    more » « less
  4. In this paper, we study the finite-sum convex optimization problem focusing on the general convex case. Recently, the study of variance reduced (VR) methods and their accelerated variants has made exciting progress. However, the step size used in the existing VR algorithms typically depends on the smoothness parameter, which is often unknown and requires tuning in practice. To address this problem, we propose two novel adaptive VR algorithms: Adaptive Variance Reduced Accelerated Extra-Gradient (AdaVRAE) and Adaptive Variance Reduced Accelerated Gradient (AdaVRAG). Our algorithms do not require knowledge of the smoothness parameter. AdaVRAE uses $\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta}{\epsilon}}\right)$ and AdaVRAG uses $\mathcal{O}\left(n\log\log n+\sqrt{\frac{n\beta\log\beta}{\epsilon}}\right)$ gradient evaluations to attain an $\mathcal{O}(\epsilon)$-suboptimal solution, where $n$ is the number of functions in the finite sum and $\beta$ is the smoothness parameter. This result matches the best-known convergence rate of non-adaptive VR methods and it improves upon the convergence of the state of the art adaptive VR method, AdaSVRG. We demonstrate the superior performance of our algorithms compared with previous methods in experiments on real-world datasets. 
    more » « less
  5. Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works. 
    more » « less