skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 7-Cyanoindole fluorescence as a local hydration reporter: application to probe the microheterogeneity of nine water-organic binary mixtures
Considerable efforts have been devoted to the development of spectroscopic probes that are sensitive to water and can be used to monitor, for example, biological and chemical processes involving dehydration or hydration. Continuing this line of research, herein we show that 7-cyanoindole can serve as a sensitive fluorescence probe of hydration as its fluorescence properties, including intensity, peak wavelength and lifetime, depend on the amount of water in nine water–organic solvent mixtures. Our results indicate that 7-cyanoindole is not only able to reveal the underlying microheterogeneity of these binary solvent systems, but also offers distinct advantages. These include: (1) its fluorescence intensity increases more than ten times upon going from a hydrated to a dehydrated environment; (2) its peak wavelength shifts as much as 35 nm upon dehydration; (3) its single-exponential fluorescence decay lifetime increases from 2.0 ns in water to 8–16 ns in water–organic binary mixtures, making it viable to distinguish between differently hydrated environments via fluorescence lifetime measurements; and (4) its absorption spectrum is significantly red-shifted from that of indole, making selective excitation of its fluorescence possible in the presence of naturally occurring amino-acid fluorophores. Moreover, we find that for seven binary mixtures the fluorescence lifetimes of 7-cyanoindole measured at solvent compositions where maximum microheterogeneity occurs correlate linearly with the peak wavenumbers of its fluorescence spectra obtained in the respective pure organic solvents. This suggests that the microheterogeneities of these binary mixtures bear certain similarity, a phenomenon that warrants further investigation.  more » « less
Award ID(s):
1659512
PAR ID:
10080924
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
20
Issue:
4
ISSN:
1463-9076
Page Range / eLocation ID:
2527 to 2535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA functions only in aqueous environments and adopts different conformations depending on the hydration level. The dynamics of hydration water and hydrated DNA leads to rotating and oscillating dipoles that, in turn, give rise to a strong megahertz to terahertz absorption. Investigating the impact of hydration on DNA dynamics and the spectral features of water molecules influenced by DNA, however, is extremely challenging because of the strong absorption of water in the megahertz to terahertz frequency range. In response, we have employed a high-precision megahertz to terahertz dielectric spectrometer, assisted by molecular dynamics simulations, to investigate the dynamics of water molecules within the hydration shells of DNA as well as the collective vibrational motions of hydrated DNA, which are vital to DNA conformation and functionality. Our results reveal that the dynamics of water molecules in a DNA solution is heterogeneous, exhibiting a hierarchy of four distinct relaxation times ranging from ~8 ps to 1 ns, and the hydration structure of a DNA chain can extend to as far as ~18 A from its surface. The low-frequency collective vibrational modes of hydrated DNA have been identified and found to be sensitive to environmental conditions including temperature and hydration level. The results reveal critical information on hydrated DNA dynamics and DNA-water interfaces, which impact the biochemical functions and reactivity of DNA. 
    more » « less
  2. Inorganic salt hydrates are promising materials for thermochemical energy storage as they undergo reversible solid-gas chemical reactions with water vapor to yield high energy densities with negligible self-discharge. However, material-level challenges such as structural and hygrothermal instabilities during the dehydration (charging) and hydration (discharging) reaction have limited their practical application in the buildings sector. The objective of this study is to address these irreversibilities in SrCl2 and MgCl2 by establishing a fabrication procedure that minimizes vapor diffusion resistance and lowers kinetic barriers for nucleation via particle size reduction. Furthermore, the distinct phase behavior of these two salts is leveraged to demonstrate a new binary salt mixture. Characterization of these materials was done using simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) with a humidity generator. The results demonstrate that ball milling to particle sizes <50 μm yields a structurally stable material with improved hydration kinetics, while a 50/50 mass ratio of the binary mixture extends the range of conditions for the hydration reaction. Importantly, the salt mixture achieves a high specific energy density of 1100 J g-1 and peak thermal power output of 1.4 W g-1 under conditions at which the individual salts either deliquesce (MgCl2) or do not fully/rapidly hydrate (SrCl2). This work provides a procedure for the standardized fabrication and rational design of thermochemical salt mixtures with complementary phase behavior. 
    more » « less
  3. Abstract Strategic incorporation of ameta‐dimethylamino (–NMe2) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m‐NMe2‐LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ~200‐fold decrease in fluorescence quantum yield ofm‐NMe2‐LpHBDI in alcohols (e.g., MeOH, EtOH and 2‐PrOH) supports this GFP‐derived compound as a fluorescence turn‐on water sensor, with large fluorescence intensity differences between H2O and ROH emissions in various H2O/ROH binary mixtures. A combination of steady‐state electronic spectroscopy, femtosecond transient absorption, ground‐state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen‐bonding chain between a solvent –OH group and the chromophore phenolic ring –NMe2and –OH functional groups, wherein fluorescence differences arise from an extended hydrogen‐bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge‐transfer state. The absence of ameta‐NMe2group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without themeta‐NMe2group or with bothmeta‐NMe2andpara‐OH groups locked in a six‐membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors. 
    more » « less
  4. Abstract Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium‐ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte‐mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance. 
    more » « less
  5. Abstract Single wall carbon nanotubes (SWCNTs) functionalized with (bio-)polymers such as DNA are soluble in water and sense analytes by analyte-specific changes of their intrinsic fluorescence. Such SWCNT-based (bio-)sensors translate the binding of a molecule (molecular recognition) into a measurable optical signal. This signal transduction is crucial for all types of molecular sensors to achieve high sensitivities. Although there is an increasing number of SWCNT-based sensors, there is yet no molecular understanding of the observed changes in the SWCNT’s fluorescence. Here, we report THz experiments that map changes in the local hydration of the solvated SWCNT upon binding of analytes such as the neurotransmitter dopamine or the vitamin riboflavin. The THz amplitude signal serves as a measure of the coupling of charge fluctuations in the SWCNTs to the charge density fluctuations in the hydration layer. We find a linear (inverse) correlation between changes in THz amplitude and the intensity of the change in fluorescence induced by the analytes. Simulations show that the organic corona shapes the local water, which determines the exciton dynamics. Thus, THz signals are a quantitative predictor for signal transduction strength and can be used as a guiding chemical design principle for optimizing fluorescent biosensors. 
    more » « less