skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermochemical energy storage using salt mixtures with improved hydration kinetics and cycling stability
Inorganic salt hydrates are promising materials for thermochemical energy storage as they undergo reversible solid-gas chemical reactions with water vapor to yield high energy densities with negligible self-discharge. However, material-level challenges such as structural and hygrothermal instabilities during the dehydration (charging) and hydration (discharging) reaction have limited their practical application in the buildings sector. The objective of this study is to address these irreversibilities in SrCl2 and MgCl2 by establishing a fabrication procedure that minimizes vapor diffusion resistance and lowers kinetic barriers for nucleation via particle size reduction. Furthermore, the distinct phase behavior of these two salts is leveraged to demonstrate a new binary salt mixture. Characterization of these materials was done using simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) with a humidity generator. The results demonstrate that ball milling to particle sizes <50 μm yields a structurally stable material with improved hydration kinetics, while a 50/50 mass ratio of the binary mixture extends the range of conditions for the hydration reaction. Importantly, the salt mixture achieves a high specific energy density of 1100 J g-1 and peak thermal power output of 1.4 W g-1 under conditions at which the individual salts either deliquesce (MgCl2) or do not fully/rapidly hydrate (SrCl2). This work provides a procedure for the standardized fabrication and rational design of thermochemical salt mixtures with complementary phase behavior.  more » « less
Award ID(s):
2238705
PAR ID:
10560131
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Energy Storage
Volume:
90
Issue:
PB
ISSN:
2352-152X
Page Range / eLocation ID:
111916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermochemical energy storage is promising for building applications as it offers high energy density and near-lossless storage. For example, inorganic salt hydrates that undergo reversible solid-gas thermochemical reactions can be used for thermal load shifting and/or shedding in buildings. However, this technology is still in early stages of development and drawbacks need to be addressed to make such a thermal battery viable. As salt hydrates differ in their morphology, crystal and/or particle size, and hygrothermal stability, it is critical to characterize thermochemical reactions accurately under specific operating conditions. Not only is the amount of heat delivered important, but so is the rate at which this heat is extracted for thermal end-use in buildings. However, the latter is not well reported in the literature, which is largely focused on energy storage rather than power density during the hydration reaction (battery discharge). To address this gap and the lack of standardized measurement methods, this work lays out a systematic simultaneous thermal analysis (STA) method for characterizing five different salt hydrate thermochemical materials (TCM). The effects of particle size, temperature and vapor pressure are analyzed to obtain the energy storage density and thermal power density across a full hydration-dehydration cycle under controlled conditions. 
    more » « less
  2. Structurally stabilized composites are promising for using phase change materials in high‐temperature thermal energy storage (TES). However, conventional skeleton materials, which typically comprise 30–50 wt% of the composite, mainly provide sensible heat storage and contribute minimally to overall energy density. This study introduces a new class of redox‐active oxide‐molten salt (ROMS) composites that overcome this limitation by combining sensible, latent, and thermochemical heat storage in a single particle. Specifically, porous, redox‐active Ca2AlMnO5+δ(CAM) complex oxide particles were demonstrated as a suitable support matrix, with the pores filled by eutectic NaCl/CaCl2salt. X‐ray diffraction confirms excellent phase compatibility between CAM and the salt. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and nano X‐ray tomography show good salt infiltration and wettability within the CAM pores. Thermogravimetric analysis reveals that a 60 wt% CAM/40 wt% salt composite achieves an energy density of 267 kJ kg−1over a narrow 150 °C window, with ≈50 kJ kg−1from thermochemical storage. Additionally, the composite shows higher thermal conductivity than salt alone, enabling faster energy storage and release. ROMS composites thus represent a novel and efficient solution for high‐performance TES. 
    more » « less
  3. Sea salt aerosols contribute significantly to the mass loading of ambient aerosol, which may serve as cloud condensation nuclei and can contribute to light scattering in the atmosphere. Two major chemical components commonly found in sea salts are ammonium sulfate (AS) and sodium chloride (NaCl). It has been shown that alkylamines, derivatives of ammonia, can react with ammonium salts in the particle-phase to displace ammonia and likely change the particle properties. This study investigated the effects of atmospheric alkylamines on the composition and properties of sea salt aerosols using a chemical system of methylamine (MA, as a proxy of alkylamines), AS and NaCl (as a proxy of sea salt aerosol). The concentrations of ammonia and MA in aqueous/gas phases at the thermodynamic equilibrium were determined using the Extended Aerosols and Inorganics Model (E-AIM) under varying initial inputs, along with the deliquescence relative humidity (DRH) and the corresponding particle water content. Our findings indicated a notable negative relationship between MA concentration and the DRH for both AS and NaCl while the effect of MA on NaCl is smaller than that on AS. The salt of MA in the particle phase may absorb water vapor and may lead to the displacement reaction between AS and NaCl due to the low solubility of sodium sulfate. The acidity in the particle phase also played a significant role in affecting the DRH of sea salt aerosols. Since both sea salt aerosol and alkylamines are emitted into the atmosphere from the ocean in large quantities, our study suggested the potential impact of alkylamines on the environment and the climate via the modification of sea salt aerosol properties. 
    more » « less
  4. Hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO2 and todorokite-MnO2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g−1, 44.4 mg g−1, and 43.1 mg g−1 in NaCl, KCl, and MgCl2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g−1 s−1, 0.165 mg g−1 s−1, and 0.164 mg g−1 s−1 in NaCl, KCl, and MgCl2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. This work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions. 
    more » « less
  5. Charged, physically cross‐linked hydrogels provide a versatile platform for designing responsive materials with programmable interfacial properties, with applications in drug delivery, biomedical devices, and biosensing. Here, poly(methacrylamide‐co‐methacrylic acid) hydrogels stabilized by a short‐range attractive, long‐range repulsive potential is investigated. By integrating microstructural, mechanical, and tribological characterization across multiple length and time scales, this work uncovers how salt addition alters not only swelling, but also the microstructure and dynamics, near‐surface stiffness and charge, and ultimately, its lubricity. Friction measurements reveal a velocity‐dependent response with distinct mixed, transition, and elastohydrodynamic regimes. Microscopic friction imaging reveals that adhesive interactions are promoted by salt and play a critical role. Unlike neutral hydrogels, where increased water content correlates with reduced friction, salts introduce additional dissipation mechanisms that can dominate over hydration effects, offering enhanced control of functional behavior. These findings provide new insights into the salt‐induced responsive behavior of poly(methacrylamide‐co‐methacrylic acid) hydrogels‐including lubrication mechanisms‐and challenges conventional interpretations of salt effects in polyelectrolyte systems. This knowledge will inform design principles for synthetic hydrogel interfaces and advance understanding of the functional behavior of hydrogel‐like materials such as biological tissues, whose lubricity‐in salinity conditions similar to those studied here‐is essential to their function. 
    more » « less