Efficient authentication is vital for IoT applications with stringent minimum-delay requirements (e.g., energy delivery systems). This requirement becomes even more crucial when the IoT devices are battery-powered, like small aerial drones, and the efficiency of authentication directly translates to more operation time. Although some fast authentication techniques have been proposed, some of them might not fully meet the needs of the emerging delay-aware IoT. In this paper, we propose a new signature scheme called ARIS that pushes the limits of the existing digital signatures, wherein commodity hardware can verify 83,333 signatures per second. ARIS also enables the fastest signature generation along with the lowest energy consumption and end-to-end delay among its counterparts. These significant computational advantages come with a larger storage requirement, which is a favorable trade-off for some critical delay-aware applications. These desirable features are achieved by harnessing message encoding with cover-free families and a special elliptic curve based one-way function. We prove the security of ARIS under the hardness of the elliptic curve discrete logarithm problem in the random oracle model. We provide an open-sourced implementation of ARIS on commodity hardware and an 8-bit AVR microcontroller for public testing and verification.
more »
« less
TACHYON: Fast Signatures from Compact Knapsack
We introduce a simple, yet efficient digital signature scheme which offers post-quantum security promise. Our scheme, named TACHYON, is based on a novel approach for extending one-time hash-based signatures to (polynomially bounded) many-time signatures, using the additively homomorphic properties of generalized compact knapsack functions. Our design permits TACHYON~to achieve several key properties. First, its signing and verification algorithms are the fastest among its current counterparts with a higher level of security. This allows TACHYON~to achieve the lowest end-to-end delay among its counterparts, while also making it suitable for resource-limited signers. Second, its private keys can be as small as κ bits, where κ is the desired security level. Third, unlike most of its lattice-based counterparts, TACHYON~does not require any Gaussian sampling during signing, and therefore, is free from side-channel attacks targeting this process. We also explore various speed and storage trade-offs for TACHYON, thanks to its highly tunable parameters. Some of these trade-offs can speed up TACHYON signing in exchange for larger keys, thereby permitting TACHYON~to further improve its end-to-end delay.
more »
« less
- Award ID(s):
- 1652389
- PAR ID:
- 10080955
- Date Published:
- Journal Name:
- Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
- Page Range / eLocation ID:
- 1855 to 1867
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale next-generation networked systems like smart grids and vehicular networks facilitate extensive automation and autonomy through real-time communication of sensitive messages. Digital signatures are vital for such applications since they offer scalable broadcast authentication with non-repudiation. Yet, even conventional secure signatures (e.g., ECDSA, RSA) introduce significant cryptographic delays that can disrupt the safety of such delay-aware systems. With the rise of quantum computers breaking conventional intractability problems, these traditional cryptosystems must be replaced with post-quantum (PQ) secure ones. However, PQ-secure signatures are significantly costlier than their conventional counterparts, vastly exacerbating delay hurdles for real-time applications. We propose a new signature called Time Valid Probabilistic Data Structure HORS (TVPD-HORS) that achieves significantly lower end-to-end delay with a tunable PQ-security for real-time applications. We harness special probabilistic data structures as an efficient one-way function at the heart of our novelty, thereby vastly fastening HORS as a primitive for NIST PQ cryptography standards. TVPD-HORS permits tunable and fast processing for varying input sizes via One-hash Bloom Filter, excelling in time-valid cases, wherein authentication with shorter security parameters is used for short-lived yet safety-critical messages. We show that TVPD-HORS verification is 2.7× and 5× faster than HORS in high-security and time-valid settings, respectively. TVPD-HORS key generation is also faster, with a similar signing speed to HORS. Moreover, TVPD-HORS can increase the speed of HORS variants over a magnitude of time. These features make TVPD-HORS an ideal primitive to raise high-speed time-valid versions of PQ-safe standards like XMSS and SPHINCS+, paving the way for real-time authentication of next-generation networks.more » « less
-
The rapid proliferation of resource-constrained IoT devices across sectors like healthcare, industrial automation, and finance introduces major security challenges. Traditional digital signatures, though foundational for authentication, are often infeasible for low-end devices with limited computational, memory, and energy resources. Also, the rise of quantum computing necessitates post-quantum (PQ) secure alternatives. However, NIST-standardized PQ signatures impose substantial overhead, limiting their practicality in energy-sensitive applications such as wearables, where signer-side efficiency is critical. To address these challenges, we present LightQSign (LiteQS), a novel lightweight PQ signature that achieves near-optimal signature generation efficiency with only a small, constant number of hash operations per signing. Its core innovation enables verifiers to obtain one-time hash-based public keys without interacting with signers or third parties through secure computation. We formally prove the security of LiteQS in the random oracle model and evaluate its performance on commodity hardware and a resource-constrained 8-bit AtMega128A1 microcontroller. Experimental results show that LiteQS outperforms NIST PQ standards with lower computational overhead, minimal memory usage, and compact signatures. On an 8-bit microcontroller, it achieves up to 1.5–24×higher energy efficiency and 1.7–22×shorter signatures than PQ counterparts, and 56–76×better energy efficiency than conventional standards–enabling longer device lifespans and scalable, quantum-resilient authentication.more » « less
-
This work presents SPHINCSLET, the first fully standard-compliant and area-efficient hardware implementation of the SLH-DSA algorithm, formerly known as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed to be parameterizable across different security levels and hash functions, offering a balanced trade-off between area efficiency and performance. Existing hardware implementations either feature a large area footprint to achieve fast signing and verification or adopt a coprocessor-based approach that significantly slows down these operations. SPHINCSLET addresses this gap by delivering a 4.7 × reduction in area compared to high-speed designs while achieving a 2.5 × to 5 × improvement in signing time over the most efficient coprocessor-based designs for a SHAKE256-based SPHINCS+ implementation. The SHAKE256-based SPHINCS+ FPGA implementation targeting the AMD Artix-7 requires fewer than 10.8K LUTs for any security level of SLH-DSA. Furthermore, the SHA-2-based SPHINCS+ implementation achieves a 2 × to 4 × speedup in signature generation across various security levels compared to existing SLH-DSA hardware, all while maintaining a compact area footprint of 6K to 15K LUTs. This makes it the fastest SHA-2-based SLH-DSA implementation to date. With an optimized balance of area and performance, SPHINCSLET can assist resource-constrained devices in transitioning to post-quantum cryptography.more » « less
-
Authentication and integrity are fundamental security services that are critical for any viable system. However, some of the emerging systems (e.g., smart grids, aerial drones) are delay-sensitive, and therefore their safe and reliable operation requires delay-aware authentication mechanisms. Unfortunately, the current state-of-the-art authentication mechanisms either incur heavy computations or lack scalability for such large and distributed systems. Hence, there is a crucial need for digital signature schemes that can satisfy the requirements of delay-aware applications. In this paper, we propose a new digital signature scheme that we refer to as Compact Energy and Delay-aware Authentication (CEDA). In CEDA, signature generation and verification only require a small-constant number of multiplications and Pseudo Random Function (PRF) calls. Therefore, it achieves the lowest end-to-end delay among its counterparts. Our implementation results on an ARM processor and commodity hardware show that CEDA has the most efficient signature generation on both platforms, while offering a fast signature verification. Among its delay-aware counter-parts, CEDA has a smaller private key with a constant-size signature. All these advantages are achieved with the cost of a larger public key. This is a highly favorable trade-0ff for applications wherein the verffier is not memory-limited. We open-sourced our implementation of CEDA to enable its broad testing and adaptation.more » « less
An official website of the United States government

