skip to main content


Title: A framework for isogeometric-analysis-based optimization of wind turbine blade structures: IGA-based optimization of wind turbine blade structures
NSF-PAR ID:
10080981
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Wind Energy
Volume:
22
Issue:
2
ISSN:
1095-4244
Page Range / eLocation ID:
p. 153-170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing passive acoustics-based techniques for wind turbine blade damage detection lack the robustness and adaptability necessary for an operational implementation due to their physics- and model-based dependency. In contrast, this study develops an entirely unsupervised, data-driven damage detection technique. The novelty of the technique lies in (i) the development and comparison of spectral and cepstral-domain features for the robust characterization of the cavity-internal acoustics, (ii) the use of autoencoder networks to reduce the effects of non-stationary acoustic excitation, and (iii) the exclusion of labeled or damage-case data in the training set. The technique was successfully demonstrated on a wind turbine blade section inflicted with damage of various sizes, types, and locations, and subjected to airflow-induced passive acoustic excitation provided by a wind tunnel. Damage detection accuracy up to 99.82% was achieved for some damage types.

     
    more » « less
  2. Millions of tons of GFRP composites are expected to stockpile in the next 20-30 years from decommissioning wind turbine blades, which are made primarily of these materials. Responsible and attractive solutions are currently being studied by several research teams across Europe and the United States. The Re-Wind Network is one of these research teams that focuses on developing strategies and methodologies to transform the decommissioned wind blades into ready-to-use civil infrastructure (e.g., pedestrian bridge girders and power transmission poles). This paper reports on testing of a part of a full-sized power transmission pole prototype, made from a decommissioned GE37 wind turbine blade, and loaded in the gravity direction mimicking expected loads during its “new” lifetime. Full-scale connection testing is summarized and combined with the results of the test on the 5.5 m high full-size section of the prototype to obtain safety factors for various structural components under different expected load cases (these include gravity, wind, and ice loads). Structural Integrity of the various components of the power pole is studied to prove efficacy of the proposed second-life application of the decommissioned wind blade as a power transmission pole. Recommendations to improve the design for the planned future field full-blade prototyping are emphasized.

     
    more » « less