skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant microbiome and native plant restoration: The example of native mycorrhizal fungi
Award ID(s):
1738041 1656006
PAR ID:
10081099
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
68
Issue:
12
ISSN:
0006-3568
Page Range / eLocation ID:
996-1006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.The reintroduction of soil microbiome from native ecosystems improved restoration establishment.Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance. 
    more » « less
  2. Summary The disruption of mutualisms by invasive species has consequences for biodiversity loss and ecosystem function. Although invasive plant effects on the pollination of individual native species has been the subject of much study, their impacts on entire plant–pollinator communities are less understood. Community‐level studies on plant invasion have mainly focused on two fronts: understanding the mechanisms that mediate their integration; and their effects on plant–pollinator network structure. Here we briefly review current knowledge and propose a more unified framework for evaluating invasive species integration and their effects on plant–pollinator communities. We further outline gaps in our understanding and propose ways to advance knowledge in this field. Specifically, modeling approaches have so far yielded important predictions regarding the outcome and drivers of invasive species effects on plant communities. However, experimental studies that test these predictions in the field are lacking. We further emphasize the need to understand the link between invasive plant effects on pollination network structure and their consequences for native plant population dynamics (population growth). Integrating demographic studies with those on pollination networks is thus key in order to achieve a more predictive understanding of pollinator‐mediated effects of invasive species on the persistence of native plant biodiversity. 
    more » « less
  3. null (Ed.)
    Plant soil feedback (PSF) occurs when a plant modifies soil biotic properties and those changes in turn influence plant growth, survival or reproduction. These feedback effects are not well understood as mechanisms for invasive plant species. Eragrostis lehmanniana is an invasive species that has extensively colonized the southwest US. To address how PSFs may affect E. lehmanniana invasion and native Bouteloua gracilis growth, soil inoculant from four sites of known invasion age at the Appleton-Whittell Audubon Research Ranch in Sonoita, AZ were used in a PSF greenhouse study, incorporating a replacement series design. The purpose of this research was to evaluate PSF conspecific and heterospecific effects and competition outcomes between the invasive E. lehmanniana and a native forage grass, Bouteloua gracilis . Eragrostis lehmanniana PSFs were beneficial to B. gracilis if developed in previously invaded soil. Plant-soil feedback contributed to competitive suppression of B. gracilis only in the highest ratio of E. lehmanniana to B. gracilis . Plant-soil feedback did not provide an advantage to E. lehmanniana in competitive interactions with B. gracilis at low competition levels but were advantageous to E. lehmanniana at the highest competition ratio, indicating a possible density-dependent effect. Despite being beneficial to B. gracilis under many conditions, E. lehmanniana was the superior competitor. 
    more » « less