skip to main content


Title: Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP
Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.  more » « less
Award ID(s):
1436458 1428915
NSF-PAR ID:
10081174
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
4
Issue:
10
ISSN:
2375-2548
Page Range / eLocation ID:
eaau5716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interactions between marine phytoplankton, viruses, and bacteria drive biogeochemical cycling, shape marine trophic structures, and impact global climate. Microbially produced compounds have emerged as key players in influencing eukaryotic organismal physiology, and in turn, remodel microbial community structure. This work aimed to reveal the molecular mechanism by which the bacterial quorum sensing molecule 2-heptyl-4-quinolone (HHQ), produced by the marine gammaproteobacteriumPseudoalteromonasspp., arrests cell division and confers protection from virus-induced mortality in the bloom-forming coccolithophoreEmiliania huxleyi. Previous work has established alkylquinolones as inhibitors of dihydroorotate dehydrogenase (DHODH), a fundamental enzyme catalyzing the fourth step in pyrimidine biosynthesis and a potential antiviral drug target. An N-terminally truncated version ofE. huxleyiDHODH was heterologously expressed inE. coli, purified, and kinetically characterized. Here, we show HHQ is a potent inhibitor (Kiof 2.3 nM) ofE. huxleyiDHODH.E. huxleyicells exposed to brequinar, the canonical human DHODH inhibitor, experienced immediate, yet reversible cellular arrest, an effect which mirrors HHQ-induced cellular stasis previously observed. However, brequinar treatment lacked other notable effects observed in HHQ-exposedE. huxleyiincluding significant changes in cell size, chlorophyll fluorescence, and protection from virus-induced lysis, indicating HHQ has additional as yet undiscovered physiological targets. Together, these results suggest a novel and intricate role of bacterial quorum sensing molecules in tripartite interdomain interactions in marine ecosystems, opening new avenues for exploring the role of microbial chemical signaling in algal bloom regulation and host-pathogen dynamics.

     
    more » « less
  2. While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensityPARon the bloom‐forming dinoflagellatesAlexandrium fundyenseandHeterocapsa rotundata. Various physiological parameters (photosynthetic efficiencyFv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐acontent) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to highPAR. While high light decreasedFv/Fmin both species,A. fundyenseshowed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellularDMSPindicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐ainversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells.Heterocapsa rotundatacells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasingDMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐acontent. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.

     
    more » « less
  3. Stams, Alfons J. (Ed.)
    ABSTRACT Planktothrix agardhii dominates the cyanobacterial harmful algal bloom community in Sandusky Bay, Lake Erie (USA), from May through September. This filamentous cyanobacterium is host to a known obligate parasite, the chytrid Rhizophydium sp. During the 2018 bloom season, by utilizing dilution and single-filament isolation techniques, 7 chytrid and 12 P. agardhii strains were isolated from Sandusky Bay. These 7 chytrids and a selection of P. agardhii hosts were then characterized with respect to infection rates. Infections by the isolated chytrids were specific to Planktothrix planktonic species and were not found on other filamentous cyanobacterial taxa present in the bay ( Aphanizomenon sp. and Cuspidothrix sp.). Even among the potential P. agardhii host strains, individual chytrid isolates had different degrees of infectivity and showed preferences for different host isolates, suggesting possible ecological partitioning even within the same sample population. When mechanisms of chytrid pathogenesis were examined, the zoospores displayed a swarming pattern to attack and fracture the host filament and create new infection sites at the trichome termini. Infections by these parasitic chytrids also led to a release of intracellular microcystin toxins from the hosts. Additionally, infections were dependent on medium type, highlighting the importance of medium choice for experimental outcomes. Media in which chytrid swarming was observed closely matched the ionic strength of the natural environment. Understanding pathogenesis by fungal parasites will assist future efforts to determine environmental factors favoring loss mechanisms for Planktothrix agardhii -dominated blooms. IMPORTANCE Whereas many studies have focused on the factors contributing to the establishment and persistence of cyanobacterial harmful algal blooms (cHABs), few studies have examined bloom pathogenesis. Chytrid fungi infect cyanobacteria and stimulate food web interactions through manipulation of previously hard-to-digest filaments and the release of nutrients to support heterotrophic microbes. Specifically, chytrids infective for filamentous Planktothrix agardhii exhibit a species-specific infection that fragments trichomes into shorter units that can be consumed more easily by grazers. Chytrid zoospores also serve as a high-quality food source for the lower food web. Understanding host-pathogen relationships and mechanisms of pathogenesis on cyanobacteria will be necessary to effectively model the ecology of cHABs. 
    more » « less
  4. Huber, Julie A. (Ed.)
    ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions. 
    more » « less
  5. Phytoplankton blooms in the Arctic marginal ice zone (MIZ) can be prolific dimethylsulfide (DMS) producers, thereby influencing regional aerosol formation and cloud radiative forcing. Here we describe the distribution of DMS and its precursor dimethylsulfoniopropionate (DMSP) across the Baffin Bay receding ice edge in early summer 2016. Overall, DMS and total DMSP (DMSPt) increased towards warmer waters of Atlantic origin concurrently with more advanced ice-melt and bloom stages. Relatively high DMS and DMSPt (medians of 6.3 and 70 nM, respectively) were observed in the surface layer (0–9 m depth), and very high values (reaching 74 and 524 nM, respectively) at the subsurface biomass maximum (15–30 m depth). Microscopic and pigment analyses indicated that subsurface DMS and DMSPt peaks were associated with Phaeocystis pouchetii, which bloomed in Atlantic-influenced waters and reached unprecedented biomass levels in Baffin Bay. In surface waters, DMS concentrations and DMS:DMSPt ratios were higher in the MIZ (medians of 12 nM and 0.15, respectively) than in fully ice-covered or ice-free conditions, potentially associated with enhanced phytoplanktonic DMSP release and bacterial DMSP cleavage (high dddP:dmdA gene ratios). Mean sea–air DMS fluxes (micromol m–2 d–1) increased from 0.3 in ice-covered waters to 10 in open waters (maximum of 26) owing to concurrent trends in near-surface DMS concentrations and physical drivers of gas exchange. Using remotely sensed sea-ice coverage and a compilation of sea–air DMS flux data, we estimated that the pan-Arctic DMS emission from the MIZ was 5–13 Gg S yr–1. North of 80 oN, DMS emissions might have increased by around 10% yr–1 between 2003 and 2014, likely exceeding open-water emissions in June and July. We conclude that DMS emissions from the MIZ must be taken into account to evaluate plankton-climate feedbacks in the Arctic. 
    more » « less