skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Harmful algal blooms in inland waters
Harmful algal blooms can produce toxins that pose threats to aquatic ecosystems and human health. In this Review, we outline the global trends in harmful algal bloom occurrence and explore the drivers, future trajectories and potential mitigation strategies. Globally, harmful algal bloom occurrence has risen since the 1980s, including a 44% increase from the 2000s to 2010s, especially in Asia and Africa. Enhanced nutrient pollution owing to urbanization, wastewater discharge and agricultural expansion are key drivers of these increases. In contrast, changes have been less substantial in high-income regions such as North America, Europe and Oceania, where policies to mitigate nutrient pollution have stabilized bloom occurrences since the 1970s. However, since the 1990s, climate warming and legacy nutrient pollution have driven a resurgence in toxic algal blooms in some US and European lakes, highlighting the inherent challenges in mitigating harmful blooms in a warming climate. Indeed, advancing research on harmful algal bloom dynamics and projections largely depends on effectively using data from multiple sources to understand environmental interactions and enhance modelling techniques. Integrated monitoring networks across various spatiotemporal scales and data-sharing frameworks are essential for improving harmful algal bloom forecasting and mitigation.  more » « less
Award ID(s):
2108917 2418066
PAR ID:
10562283
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Reviews Earth & Environment
Volume:
5
Issue:
9
ISSN:
2662-138X
Page Range / eLocation ID:
631 to 644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humbert, Jean-François (Ed.)
    Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis . 
    more » « less
  2. Abstract Climate warming in combination with nutrient enrichment can greatly promote phytoplankton proliferation and blooms in eutrophic waters. Lake Taihu, China, is a large, shallow and eutrophic system. Since 2007, this lake has experienced extensive nutrient input reductions aimed at controlling cyanobacterial blooms. However, intense cyanobacterial blooms have persisted through 2017 with a record‐setting bloom occurring in May 2017. Causal analysis suggested that this bloom was sygenerically driven by high external loading from flooding in 2016 in the Taihu catchment and a notable warmer winter during 2016/2017. High precipitation during 2016 was associated with a strong 2015/2016 El Niño in combination with the joint effects of Atlantic Multi‐decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), while persistent warmth during 2016/2017 was strongly related to warm phases of AMO and PDO. The 2017 blooms elevated water column pH and led to dissolved oxygen depletion near the sediment, both of which mobilized phosphorus from the sediment to overlying water, further promoting cyanobacterial blooms. Our finding indicates that regional climate anomalies exacerbated eutrophication via a positive feedback mechanism, by intensifying internal nutrient cycling and aggravating cyanobacterial blooms. In light of global expansion of eutrophication and blooms, especially in large, shallow and eutrophic lakes, these regional effects of climate anomalies are nested within larger scale global warming predicted to continue in the foreseeable future. 
    more » « less
  3. Abstract Lake Erie, USA–Canada, plays an important ecological and socioeconomic role but has suffered from chronic eutrophication. In particular, western Lake Erie (WLE) is the site of harmful algal blooms (HABs) which are suspected of being driven by excessive nutrient (phosphorus (P) and nitrogen (N)) inputs. During 2022 and 2023, in situ nutrient dilution and addition bioassays were conducted at a WLE bloom‐impacted location to investigate whether a nutrient reduction regime would be effective in limiting phytoplankton growth during the June diatom‐dominated spring blooms and August cyanobacteria‐dominated summer blooms. The primary objectives of this experiment were to (1) Determine if a proposed 40% P‐alone reduction would effectively reduce phytoplankton growth and mitigate blooms and (2) assess whether reductions in both P and N are more effective in controlling phytoplankton biomass than exclusive reductions in either N or P. Samples were analyzed for nutrient concentrations and growth rate responses for specific algal groups, utilizing diagnostic (for major algal groups) photopigments. Results indicated that although both 20% and 40% dilutions led to lower phytoplankton biomass and growth rates, 40% reductions were more effective. Our results support the USA–Canada Great Lakes Water Quality Agreement recommendation of a 40% P reduction, but also indicate that a parallel reduction of N input by 40% would be most effective in controlling bloom magnitudes. Overall, our findings underscore the recommendation that a year‐round dual N and P 40% reduction is needed for long‐term control of eutrophication and algal blooms, including cyanobacteria and diatoms, in Lake Erie. 
    more » « less
  4. ABSTRACT Snow algal blooms decrease snow albedo and increase local melt rates. However, the causes behind the size and frequency of these blooms are still not well understood. One factor likely contributing is nutrient availability, specifically nitrogen and phosphorus. The nutrient requirements of the taxa responsible for these blooms are not known. Here, we assessed the growth of three commercial strains of snow algae under 24 different nutrient treatments that varied in both absolute and relative concentrations of nitrogen and phosphorus. After 38 days of incubation, we measured total biomass and cell size and estimated their effective albedo reduction surface. Snow algal strains tended to respond similarly and achieved bloom‐like cell densities over a wide range of nutrient conditions. However, the molar ratio of nitrogen to phosphorus at which maximum biomass was achieved was between 4 and 7. Our data indicate a high requirement for phosphorus for snow algae and highlights phosphorus availability as a critical factor influencing the frequency and extent of snow algae blooms and their potential contribution to snow melt through altered albedo. Snow algae can thrive across a range of nitrogen (N) and phosphorus (P) conditions, with a higher P requirement for optimal growth. Our study suggests that increased N deposition may have a limited impact on snow algae bloom occurrence and size, emphasising P as a key factor influencing these blooms and their potential to accelerate snow melt by lowering albedo. 
    more » « less
  5. Toxic and harmful algal blooms (HABs) are a global problem affecting human health, marine ecosystems, and coastal economies, the latter through their impact on aquaculture, fisheries, and tourism. As our knowledge and the techniques to study HABs advance, so do international monitoring efforts, which have led to a large increase in the total number of reported cases. However, in addition to increased detections, environmental factors associated with global change, mainly high nutrient levels and warming temperatures, are responsible for the increased occurrence, persistence, and geographical expansion of HABs. The Chilean Patagonian fjords provide an “open-air laboratory” for the study of climate change, including its impact on the blooms of several toxic microalgal species, which, in recent years, have undergone increases in their geographical range as well as their virulence and recurrence (the species Alexandrium catenella, Pseudochattonella verruculosa, and Heterosigma akashiwo, and others of the genera Dinophysis and Pseudo-nitzschia). Here, we review the evolution of HABs in the Chilean Patagonian fjords, with a focus on the established connections between key features of HABs (expansion, recurrence, and persistence) and their interaction with current and predicted global climate-change-related factors. We conclude that large-scale climatic anomalies such as the lack of rain and heat waves, events intensified by climate change, promote the massive proliferation of these species by creating ideal conditions for their growth and persistence, as they affect water-column stratification, nutrient inputs, and reproductive rates. 
    more » « less