skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing demographics of scientific careers: The rise of the temporary workforce
Contemporary science has been characterized by an exponential growth in publications and a rise of team science. At the same time, there has been an increase in the number of awarded PhD degrees, which has not been accompanied by a similar expansion in the number of academic positions. In such a competitive environment, an important measure of academic success is the ability to maintain a long active career in science. In this paper, we study workforce trends in three scientific disciplines over half a century. We find dramatic shortening of careers of scientists across all three disciplines. The time over which half of the cohort has left the field has shortened from 35 y in the 1960s to only 5 y in the 2010s. In addition, we find a rapid rise (from 25 to 60% since the 1960s) of a group of scientists who spend their entire career only as supporting authors without having led a publication. Altogether, the fraction of entering researchers who achieve full careers has diminished, while the class of temporary scientists has escalated. We provide an interpretation of our empirical results in terms of a survival model from which we infer potential factors of success in scientific career survivability. Cohort attrition can be successfully modeled by a relatively simple hazard probability function. Although we find statistically significant trends between survivability and an author’s early productivity, neither productivity nor the citation impact of early work or the level of initial collaboration can serve as a reliable predictor of ultimate survivability.  more » « less
Award ID(s):
1636636
PAR ID:
10081223
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
50
ISSN:
0027-8424
Page Range / eLocation ID:
p. 12616-12623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A central question in the science of science concerns how to develop a quantitative understanding of the evolution and impact of individual careers. Over the course of history, a relatively small fraction of individuals have made disproportionate, profound, and lasting impacts on science and society. Despite a long-standing interest in the careers of scientific elites across diverse disciplines, it remains difficult to collect large-scale career histories that could serve as training sets for systematic empirical and theoretical studies. Here, by combining unstructured data collected from CVs, university websites, and Wikipedia, together with the publication and citation database from Microsoft Academic Graph (MAG), we reconstructed publication histories of nearly all Nobel prize winners from the past century, through both manual curation and algorithmic disambiguation procedures. Data validation shows that the collected dataset presents among the most comprehensive collection of publication records for Nobel laureates currently available. As our quantitative understanding of science deepens, this dataset is expected to have increasing value. It will not only allow us to quantitatively probe novel patterns of productivity, collaboration, and impact governing successful scientific careers, it may also help us unearth the fundamental principles underlying creativity and the genesis of scientific breakthroughs. 
    more » « less
  2. Teamwork has become more important in recent decades. We show that larger teams generate an unintended side effect: individuals who finish their PhD when the average team in their field is larger have worse career prospects. Our analysis combines data on career outcomes from the Survey of Doctorate Recipients with publication data that measures team size from ISI Web of Science. As average team size in a field increased over time, junior academic scientists became less likely to secure research funding or obtain tenure and were more likely to leave academia relative to their older counterparts. The team size effect can fully account for the observed decline in tenure prospects in academic science. The rise in team size was not associated with the end of mandatory retirement. However, the doubling of the NIH budget was associated with a significant increase in team size. Our results demonstrate that academic science has not adjusted its reward structure, which is largely individual, in response to team science. Failing to address these concerns means a significant loss as junior scientists exit after a costly and specialized education in science. 
    more » « less
  3. The landscape of graduate science education is changing as efforts to diversify the professoriate have increased because academic faculty jobs at universities have grown scarce and more competitive. With this context as a backdrop, the present research examines the perceptions and career goals of advisors and advisees through surveys of PhD students (Study 1, N  = 195) and faculty mentors (Study 2, N  = 272) in science, technology, engineering, and math disciplines. Study 1 examined actual preferences and career goals of PhD students among three options: research careers, teaching careers, and non-academic careers in industry, and compared the actual preferences of students with what they perceived as being the normative preferences of faculty. Overall, students had mixed preferences but perceived that their advisors had a strong normative preference for research careers for them. Moreover, students who ranked research positions as most desirable felt the most belonging in their academic departments. Further analyses revealed no differences in career preferences as a function of underrepresented minority (URM) student status or first-generation (FG) status, but URM and FG students felt less belonging in their academic departments. Study 2 examined faculty preferences for different careers for their advisees, both in general and for current students in particular. While faculty advisors preferred students to go into research in general, when focusing on specific students, they saw their preferences as being closely aligned with the career preference of each PhD student. Faculty advisors did not perceive any difference in belonging between their students as a function of their URM status. Discrepancies between student and faculty perceptions may occur, in part, because faculty and students do not engage in sufficient discussions about the wider range of career options beyond academic research. Supporting this possibility, PhD students and faculty advisors reported feeling more comfortable discussing research careers with each other than either non-academic industry positions or teaching positions. Discussion centers on the implications of these findings for interpersonal and institutional efforts to foster diversity in the professoriate and to create open communication about career development. 
    more » « less
  4. Despite the long-standing calls for increased levels of interdisciplinary research as a way to address society’s grand challenges, most science is still disciplinary. To understand the slow rate of convergence to more interdisciplinary research, we examine 154,021 researchers who received a PhD in a biomedical field between 1970 and 2013, measuring the interdisciplinarity of their articles using the disciplinary composition of references. We provide a range of evidence that interdisciplinary research is impactful, but that those who conduct it face early career impediments. The researchers who are initially the most interdisciplinary tend to stop publishing earlier in their careers—it takes about 8 y for half of the researchers in the top percentile in terms of initial interdisciplinarity to stop publishing, compared to more than 20 y for moderately interdisciplinary researchers (10th to 75th percentiles). Moreover, perhaps in response to career challenges, initially interdisciplinary researchers on average decrease their interdisciplinarity over time. These forces reduce the stock of interdisciplinary researchers who can train future cohorts. Indeed, new graduates tend to be less interdisciplinary than the stock of active researchers. We show that interdisciplinarity does increase over time despite these dampening forces because initially disciplinary researchers become more interdisciplinary as their careers progress. 
    more » « less
  5. Abstract Mentorship in science is crucial for topic choice, career decisions, and the success of mentees and mentors. Typically, researchers who study mentorship use article co-authorship and doctoral dissertation datasets. However, available datasets of this type focus on narrow selections of fields and miss out on early career and non-publication-related interactions. Here, we describe Mentorship, a crowdsourced dataset of 743176 mentorship relationships among 738989 scientists primarily in biosciences that avoids these shortcomings. Our dataset enriches the Academic Family Tree project by adding publication data from the Microsoft Academic Graph and “semantic” representations of research using deep learning content analysis. Because gender and race have become critical dimensions when analyzing mentorship and disparities in science, we also provide estimations of these factors. We perform extensive validations of the profile–publication matching, semantic content, and demographic inferences, which mostly cover neuroscience and biomedical sciences. We anticipate this dataset will spur the study of mentorship in science and deepen our understanding of its role in scientists’ career outcomes. 
    more » « less