skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics and thermodynamics of air-driven active spinners
We report on the collective behavior of active particles in which energy is continuously supplied to rotational degrees of freedom. The active spinners are 3D-printed disks, 1 cm in diameter, that have an embedded fan-like structure, such that a sub-levitating up-flow of air forces them to spin. Single spinners exhibit Brownian motion with a narrow Gaussian velocity distribution function, P ( v ), for translational motion. We study the evolution of P ( v ) as the packing fraction and the average single particle spin speeds are varied. The interparticle hydrodynamic interaction is negligible, and the dynamics is dominated by hyperelastic collisions and dissipative forces. As expected for nonequilibrium systems, P ( v ) for a collection of many spinners deviates from Gaussian behavior. However, unlike translationally active systems, phase separation is not observed, and the system remains spatially homogeneous. We then search for a near-equilibrium counterpart for our active spinners by measuring the equation of state. Interestingly, it agrees well with a hard-sphere model, despite the dissipative nature of the single particle dynamics.  more » « less
Award ID(s):
1659512
PAR ID:
10081323
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
14
Issue:
27
ISSN:
1744-683X
Page Range / eLocation ID:
5588 to 5594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the spatiotemporal spreading of correlations in an ensemble of spins due to dissipation characterized by short- and long-range spatial profiles. Such emission channels can be synthesized with tunable spatial profiles in lossy cavity QED experiments using a magnetic field gradient and a Raman drive with multiple sidebands. We consider systems initially in an uncorrelated state, and find that correlations widen and contract in a novel pattern intimately related to both the dissipative nature of the dynamical channel and its spatial profile. Additionally, we make a methodological contribution by generalizing nonequilibrium spin-wave theory to the case of dissipative systems and derive equations of motion for any translationally invariant spin chain whose dynamics can be described by a combination of Hamiltonian interactions and dissipative Lindblad channels. Our work aims at extending the study of correlation dynamics to purely dissipative quantum simulators and compare them with the established paradigm of correlations spreading in Hamiltonian systems. 
    more » « less
  2. Chiral fluids – such as fluids under rotation or a magnetic field as well as synthetic and biological active fluids – flow in a different way than ordinary ones. Due to symmetries broken at the microscopic level, chiral fluids may have asymmetric stress and viscosity tensors, for example giving rise to a hydrostatic torque or non-dissipative (odd) and parity-violating viscosities. In this article, we investigate the motion of rigid bodies in such an anisotropic fluid in the incompressible Stokes regime through the mobility matrix, which encodes the response of a solid body to forces and torques. We demonstrate how the form of the mobility matrix, which is usually determined by particle geometry, can be analogously controlled by the symmetries of the fluid. By computing the mobility matrix for simple shapes in a three-dimensional (3-D) anisotropic chiral fluid, we predict counterintuitive phenomena such as motion at an angle to the direction of applied forces and spinning under the force of gravity. 
    more » « less
  3. Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field. 
    more » « less
  4. We report a minimal microtubule-based motile system displaying signatures of unconventional diffusion. The system consists of a single model cargo driven by an ensemble of N340K NCD motors along a single microtubule. Despite the absence of cytosolic or cytoskeleton complexity, the system shows complex behavior, characterized by sub-diffusive motion for short time lag scales and linear mean squared displacement dependence for longer time lags. The latter is also shown to have non-Gaussian character and cannot be ascribed to a canonical diffusion process. We use single particle tracking and analysis at varying temperatures and motor concentrations to identify the origin of these behaviors as enzymatic activity of mutant NCD. Our results show that signatures of non-Gaussian diffusivities can arise as a result of an active process and suggest that some immotility of cargos observed in cells may reflect the ensemble workings of mechanochemical enzymes and need not always reflect the properties of the cytoskeletal network or the cytosol. 
    more » « less
  5. The Stokes equation describes the motion of fluids when inertial forces are negligible compared with viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetized and rotating fluids. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyse the effects of parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble and on many-particle sedimentation. In all the cases that we analyse, parity-violating viscosities give rise to an azimuthal flow even when the driving force is parallel to the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation of the spherical cloud into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems. 
    more » « less