skip to main content

Title: Dynamics and thermodynamics of air-driven active spinners
We report on the collective behavior of active particles in which energy is continuously supplied to rotational degrees of freedom. The active spinners are 3D-printed disks, 1 cm in diameter, that have an embedded fan-like structure, such that a sub-levitating up-flow of air forces them to spin. Single spinners exhibit Brownian motion with a narrow Gaussian velocity distribution function, P ( v ), for translational motion. We study the evolution of P ( v ) as the packing fraction and the average single particle spin speeds are varied. The interparticle hydrodynamic interaction is negligible, and the dynamics is dominated by hyperelastic collisions and dissipative forces. As expected for nonequilibrium systems, P ( v ) for a collection of many spinners deviates from Gaussian behavior. However, unlike translationally active systems, phase separation is not observed, and the system remains spatially homogeneous. We then search for a near-equilibrium counterpart for our active spinners by measuring the equation of state. Interestingly, it agrees well with a hard-sphere model, despite the dissipative nature of the single particle dynamics.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Soft Matter
Page Range or eLocation-ID:
5588 to 5594
Sponsoring Org:
National Science Foundation
More Like this
  1. The Stokes equation describes the motion of fluids when inertial forces are negligible compared with viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetized and rotating fluids. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyse the effects of parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble and on many-particle sedimentation. In all the cases that we analyse, parity-violating viscosities give rise to an azimuthal flow even when the driving force is parallel to the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation of the spherical cloud into amore »torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems.« less
  2. Locomotion by shape changes or gas expulsion is assumed to require environmental interaction, due to conservation of momentum. However, as first noted in [J. Wisdom, Science 299, 1865-1869 (2003)] and later in [E. Guéron, Sci. Am . 301, 38-45 (2009)] and [J. Avron, O. Kenneth, New J. Phys , 8, 68 (2006)], the noncommutativity of translations permits translation without momentum exchange in either gravitationally curved spacetime or the curved surfaces encountered by locomotors in real-world environments. To realize this idea which remained unvalidated in experiments for almost 20 y, we show that a precision robophysical apparatus consisting of motors driven on curved tracks (and thereby confined to a spherical surface without a solid substrate) can self-propel without environmental momentum exchange. It produces shape changes comparable to the environment’s inverse curvatures and generates movement of 10 − 1  cm per gait. While this simple geometric effect predominates over short time, eventually the dissipative (frictional) and conservative forces, ubiquitous in real systems, couple to it to generate an emergent dynamics in which the swimming motion produces a force that is counter-balanced against residual gravitational forces. In this way, the robot both swims forward without momentum and becomes fixed in place with amore »finite momentum that can be released by ceasing the swimming motion. We envision that our work will be of use in a broad variety of contexts, such as active matter in curved space and robots navigating real-world environments with curved surfaces.« less
  3. Abstract

    Pour sand into a container and only the grains near the top surface move. The collective motion associated with the translational and rotational energy of the grains in a thin flowing layer is quickly dissipated as friction through multibody interactions. Alternatively, consider what will happen to a bed of particles if one applies a torque to each individual particle. In this paper, we demonstrate an experimental system where torque is applied at the constituent level through a rotating magnetic field in a dense bed of microrollers. The net result is the grains roll uphill, forming a heap with a negative angle of repose. Two different regimes have been identified related to the degree of mobility or fluidisation of the particles in the bulk. Velocimetry of the near surface flowing layer reveals the collective motion of these responsive particles scales in a similar way to flowing bulk granular flows. A simple granular model that includes cohesion accurately predicts the apparent negative coefficient of friction. In contrast to the response of active or responsive particles that mimic thermodynamic principles, this system results in macroscopic collective behavior that has the kinematics of a purely dissipative granular system.

  4. We report a minimal microtubule-based motile system displaying signatures of unconventional diffusion. The system consists of a single model cargo driven by an ensemble of N340K NCD motors along a single microtubule. Despite the absence of cytosolic or cytoskeleton complexity, the system shows complex behavior, characterized by sub-diffusive motion for short time lag scales and linear mean squared displacement dependence for longer time lags. The latter is also shown to have non-Gaussian character and cannot be ascribed to a canonical diffusion process. We use single particle tracking and analysis at varying temperatures and motor concentrations to identify the origin of these behaviors as enzymatic activity of mutant NCD. Our results show that signatures of non-Gaussian diffusivities can arise as a result of an active process and suggest that some immotility of cargos observed in cells may reflect the ensemble workings of mechanochemical enzymes and need not always reflect the properties of the cytoskeletal network or the cytosol.
  5. Abstract

    The Dicke model—a paradigmatic example of superradiance in quantum optics—describes an ensemble of atoms which are collectively coupled to a leaky cavity mode. As a result of the cooperative nature of these interactions, the system’s dynamics is captured by the behavior of a single mean-field, collective spin. In this mean-field limit, it has recently been shown that the interplay between photon losses and periodic driving of light–matter coupling can lead to time-crystalline-like behavior of the collective spin (Gonget al2018Phys. Rev. Lett.120040404). In this work, we investigate whether such a Dicke time crystal (TC) is stable to perturbations that explicitly break the mean-field solvability of the conventional Dicke model. In particular, we consider the addition of short-range interactions between the atoms which breaks the collective coupling and leads to complex many-body dynamics. In this context, the interplay between periodic driving, dissipation and interactions yields a rich set of dynamical responses, including long-lived and metastable Dicke-TCs, where losses can cool down the many-body heating resulting from the continuous pump of energy from the periodic drive. Specifically, when the additional short-range interactions are ferromagnetic, we observe time crystalline behavior at non-perturbative values of the coupling strength, suggesting the possible existence of stablemore »dynamical order in a driven-dissipative quantum many-body system. These findings illustrate the rich nature of novel dynamical responses with many-body character in quantum optics platforms.

    « less