skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stokes flows in three-dimensional fluids with odd and parity-violating viscosities
The Stokes equation describes the motion of fluids when inertial forces are negligible compared with viscous forces. In this article, we explore the consequence of parity-violating and non-dissipative (i.e. odd) viscosities on Stokes flows in three dimensions. Parity-violating viscosities are coefficients of the viscosity tensor that are not invariant under mirror reflections of space, while odd viscosities are those which do not contribute to dissipation of mechanical energy. These viscosities can occur in systems ranging from synthetic and biological active fluids to magnetized and rotating fluids. We first systematically enumerate all possible parity-violating viscosities compatible with cylindrical symmetry, highlighting their connection to potential microscopic realizations. Then, using a combination of analytical and numerical methods, we analyse the effects of parity-violating viscosities on the Stokeslet solution, on the flow past a sphere or a bubble and on many-particle sedimentation. In all the cases that we analyse, parity-violating viscosities give rise to an azimuthal flow even when the driving force is parallel to the axis of cylindrical symmetry. For a few sedimenting particles, the azimuthal flow bends the trajectories compared with a traditional Stokes flow. For a cloud of particles, the azimuthal flow impedes the transformation of the spherical cloud into a torus and the subsequent breakup into smaller parts that would otherwise occur. The presence of azimuthal flows in cylindrically symmetric systems (sphere, bubble, cloud of particles) can serve as a probe for parity-violating viscosities in experimental systems.  more » « less
Award ID(s):
2011854
PAR ID:
10325756
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
934
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral fluids – such as fluids under rotation or a magnetic field as well as synthetic and biological active fluids – flow in a different way than ordinary ones. Due to symmetries broken at the microscopic level, chiral fluids may have asymmetric stress and viscosity tensors, for example giving rise to a hydrostatic torque or non-dissipative (odd) and parity-violating viscosities. In this article, we investigate the motion of rigid bodies in such an anisotropic fluid in the incompressible Stokes regime through the mobility matrix, which encodes the response of a solid body to forces and torques. We demonstrate how the form of the mobility matrix, which is usually determined by particle geometry, can be analogously controlled by the symmetries of the fluid. By computing the mobility matrix for simple shapes in a three-dimensional (3-D) anisotropic chiral fluid, we predict counterintuitive phenomena such as motion at an angle to the direction of applied forces and spinning under the force of gravity. 
    more » « less
  2. In this study, we analyse ‘magneto-Stokes’ flow, a fundamental magnetohydrodynamic (MHD) flow that shares the cylindrical-annular geometry of the Taylor–Couette cell but uses applied electromagnetic forces to circulate a free-surface layer of electrolyte at low Reynolds numbers. The first complete, analytical solution for time-dependent magneto-Stokes flow is presented and validated with coupled laboratory and numerical experiments. Three regimes are distinguished (shallow-layer, transitional and deep-layer flow regimes), and their influence on the efficiency of microscale mixing is clarified. The solution in the shallow-layer limit belongs to a newly identified class of MHD potential flows, and thus induces mixing without the aid of axial vorticity. We show that these shallow-layer magneto-Stokes flows can still augment mixing in distinct Taylor dispersion and advection-dominated mixing regimes. The existence of enhanced mixing across all three distinguished flow regimes is predicted by asymptotic scaling laws and supported by three-dimensional numerical simulations. Mixing enhancement is initiated with the least electromagnetic forcing in channels with order-unity depth-to-gap-width ratios. If the strength of the electromagnetic forcing is not a constraint, then shallow-layer flows can still yield the shortest mixing times in the advection-dominated limit. Our robust description of momentum evolution and mixing of passive tracers makes the annular magneto-Stokes system fit for use as an MHD reference flow. 
    more » « less
  3. We investigate the modes of deformation of an initially spherical bubble immersed in a homogeneous and isotropic turbulent background flow. We perform direct numerical simulations of the two-phase incompressible Navier–Stokes equations, considering a low-density bubble in the high-density turbulent flow at various Weber numbers (the ratio of turbulent and surface tension forces) using the air–water density ratio. We discuss a theoretical framework for the bubble deformation in a turbulent flow using a spherical harmonic decomposition. We propose, for each mode of bubble deformation, a forcing term given by the statistics of velocity and pressure fluctuations, evaluated on a sphere of the same radius. This approach formally relates the bubble deformation and the background turbulent velocity fluctuations, in the limit of small deformations. The growth of the total surface deformation and of each individual mode is computed from the direct numerical simulations using an appropriate Voronoi decomposition of the bubble surface. We show that two successive temporal regimes occur: the first regime corresponds to deformations driven only by inertial forces, with the interface deformation growing linearly in time, in agreement with the model predictions, whereas the second regime results from a balance between inertial forces and surface tension. The transition time between the two regimes is given by the period of the first Rayleigh mode of bubble oscillation. We discuss how our approach can be used to relate the bubble lifetime to the turbulence statistics and eventually show that at high Weber numbers, bubble lifetime can be deduced from the statistics of turbulent fluctuations at the bubble scale. 
    more » « less
  4. A<sc>bstract</sc> The neutrino force results from the exchange of a pair of neutrinos. A neutrino background can significantly influence this force. In this work, we present a comprehensive calculation of the neutrino force in various neutrino backgrounds with spin dependence taken into account. In particular, we calculate the spin-independent and spin-dependent parity-conserving neutrino forces, in addition to the spin-dependent parity-violating neutrino forces with and without the presence of a neutrino background for both isotropic and anisotropic backgrounds. Compared with the vacuum case, the neutrino background can effectively violate Lorentz invariance and lead to additional parity-violating terms that are not suppressed by the velocity of external particles. We estimate the magnitude of the effect of atomic parity-violation experiments, and it turns out to be well below the current experimental sensitivity. 
    more » « less
  5. Using a numerical model, we analyse the effects of shape on both the orientation and transport of anisotropic particles in wavy flows. The particles are idealized as prolate and oblate spheroids, and we consider the regime of small Stokes and particle Reynolds numbers. We find that the particles preferentially align into the shear plane with a mean orientation that is solely a function of their aspect ratio. This alignment, however, differs from the Jeffery orbits that occur in the residual shear flow (that is, the Stokes drift velocity field) in the absence of waves. Since the drag on an anisotropic particle depends on its alignment with the flow, this preferred orientation determines the effective drag on the particles, which in turn impacts their net downstream transport. We also find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We show that this dispersion is a function of the particle’s eccentricity and the ratio of the settling and wave time scales. Due to this preferential alignment, we find that a plume of anisotropic particles in waves is on average transported farther but dispersed less than it would be if the particles were randomly oriented. Our results demonstrate that accurate prediction of the transport of anisotropic particles in wavy environments, such as microplastic particles in the ocean, requires the consideration of these preferential alignment effects. 
    more » « less