skip to main content


Title: Shear stress magnitude and transforming growth factor-βeta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device
Normal fibroblasts are present within the extracellular matrix (ECM). They can become activated, leading to increased proliferation and ECM protein secretion such as collagen type I to promote tissue remodeling. These cells are also involved in adult pathologies including cancer metastasis and cardiac and renal fibrosis. One source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT), in which endothelial cells lose their cell–cell and cell–ECM adhesions, gain invasive properties, and become mesenchymal cells. While EndMT is well characterized in developmental biology, the mechanisms and functional role of EndMT in adult physiology and pathology have not been fully investigated. A microfluidic device with an incorporated three-dimensional ECM chamber was developed to study the role of combined steady fluid shear stress magnitudes and transforming growth factor-βeta 1 (TGF-β1) on EndMT. Low (1 dyne per cm 2 ) steady shear stress and TGF-β1 exposure induced EndMT in endothelial cells, including upregulation of mesenchymal protein and gene expression markers. Cells exposed to TGF-β1 and high (20 dynes per cm 2 ) steady shear stress did not undergo EndMT, and protein and gene expression of mesenchymal markers was significantly downregulated. Mesenchymally transformed cells under static conditions with and without TGF-β1 showed significantly more collagen production when compared to fluidic conditions. These results confirm that both low shear stress and TGF-β1 induce EndMT in endothelial cells, but this process can be prevented by exposure to physiologically relevant high shear stress. These results also show conditions most likely to cause tissue pathology.  more » « less
Award ID(s):
1436173
NSF-PAR ID:
10081325
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
6
Issue:
88
ISSN:
2046-2069
Page Range / eLocation ID:
85457 to 85467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The anti‐malaria drug artesunate and other chemical analogs of artemisinin have demonstrated cytostatic and cytotoxic effects in bacterial and cancer cells. Artemisinin‐derived compounds have also been demonstrated to attenuate fibrosis in preclinical animal models, but the mechanisms by which this inhibition occurs are not well‐understood. We investigated the effects of artesunate on the emergence of the myofibroblast, which is causally implicated in pro‐fibrotic pathologies. CRL‐2097 human dermal fibroblasts were analyzed for protein and transcript expression after treatment with artesunate to analyze fibroblast activation. Proliferation and apoptosis were also evaluated following treatment with artesunate in this cell line. Treatment of human dermal fibroblasts with artesunate antagonized fibroblast activation and pro‐fibrotic extracellular matrix (ECM) deposition, both at basal culture conditions and when cultured in the presence of exogenous transforming growth factor‐β1 (TGF‐β1), a major pro‐fibrotic cytokine. Artesunate‐treated fibroblasts also demonstrated decreased proliferation and increased apoptosis. Transcript analysis by quantitative real‐time polymerase chain reaction demonstrated that artesunate downregulated expression of pro‐fibrotic genes including canonical myofibroblast markers, ECM genes, and several TGF‐β receptors and ligands, and upregulated expression of cell cycle inhibitors and matrix‐metalloproteinases. Together, these data demonstrate that artesunate antagonizes fibroblast activation and decreases expression of pro‐fibrotic genes, while also promoting myofibroblast apoptosis, suggesting that these mechanisms may be responsible in part for the anti‐fibrotic effects of artesunate described previously.

     
    more » « less
  2. Objective

    Subglottic stenosis (SGS) may result from prolonged intubation where fibrotic scar tissue narrows the airway. The scar forms by differentiated myofibroblasts secreting excessive extracellular matrix (ECM). TGF‐β1 is widely accepted as a regulator of fibrosis; however, it is unclear how biomechanical pathways co‐regulate fibrosis. Therefore, we phenotyped fibroblasts from pediatric patients with SGS to explore how key signaling pathways, TGF‐β and Hippo, impact scarring and assess the impact of inhibiting these pathways with potential therapeutic small molecules SB525334 and DRD1 agonist dihydrexidine hydrochloride (DHX).

    Methods

    Laryngeal fibroblasts isolated from subglottic as well as distal control biopsies of patients with evolving and maturing subglottic stenosis were assessed by α‐smooth muscle actin immunostaining and gene expression for α‐SMA, FN, HGF, and CTGF markers. TGF‐β and Hippo signaling pathways were modulated during TGF‐β1‐induced fibrosis using the inhibitor SB525334 or DHX and analyzed by RT‐qPCR for differential gene expression and atomic force microscopy for ECM stiffness.

    Results

    SGS fibroblasts exhibited higher α‐SMA staining and greater inflammatory cytokine and fibrotic marker expression upon TGF‐β1 stimulation (p < 0.05). SB525334 restored levels to baseline by reducing SMAD2/3 nuclear translocation (p < 0.0001) and pro‐fibrotic gene expression (p < 0.05). ECM stiffness of stenotic fibroblasts was greater than healthy fibroblasts and was restored to baseline by Hippo pathway modulation using SB525334 and DHX (p < 0.01).

    Conclusion

    We demonstrate that distinct fibroblast phenotypes from diseased and healthy regions of pediatric SGS patients respond differently to TGF‐β1 stimulation, and SB525334 has the superior potential for subglottic stenosis treatment by simultaneously modulating TGF‐β and Hippo signaling pathways.

    Level of Evidence

    NALaryngoscope, 134:287–296, 2024

     
    more » « less
  3. Abstract

    Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG‐mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor‐beta3 (TGF‐β3) sequestration, as measured by rate of association, was higher for sulfated cellulose‐containing scaffolds as compared to native GAGs. In addition, TGF‐β3 sequestration and retention over time was highest for NaCS‐containing scaffolds. Sulfated cellulose‐containing scaffolds loaded with TGF‐β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS‐containing scaffolds loaded with TGF‐β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF‐β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF‐β receptor (TGF‐ βRI)‐phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF‐β3‐induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.

     
    more » « less
  4. Abstract

    Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes, astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. The objective of this study is to investigate the impacts of neural spheroids and vascular spheroids interactions on the regional brain-like tissue patterning in cortical spheroids derived from human iPSCs. Hybrid neurovascular spheroids were constructed by fusion of human iPSC-derived cortical neural progenitor cell (iNPC) spheroids, endothelial cell (iEC) spheroids, and the supporting human mesenchymal stem cells (MSCs). Single hybrid spheroids were constructed at different iNPC: iEC: MSC ratios of 4:2:0, 3:2:1 2:2:2, and 1:2:3 in low-attachment 96-well plates. The incorporation of MSCs upregulated the secretion levels of cytokines VEGF-A, PGE2, and TGF-β1 in hybrid spheroid system. In addition, tri-cultured spheroids had high levels of TBR1 (deep cortical layer VI) and Nkx2.1 (ventral cells), and matrix remodeling genes, MMP2 and MMP3, as well as Notch-1, indicating the crucial role of matrix remodeling and cell-cell communications on cortical spheroid and organoid patterning. Moreover, tri-culture system elevated blood-brain barrier gene expression (e.g., GLUT-1), CD31, and tight junction protein ZO1 expression. Treatment with AMD3100, a CXCR4 antagonist, showed the immobilization of MSCs during spheroid fusion, indicating a CXCR4-dependent manner of hMSC migration and homing. This forebrain-like model has potential applications in understanding heterotypic cell-cell interactions and novel drug screening in diseased human brain.

     
    more » « less
  5. Abstract

    The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung‐metastatic breast cancer alters these cell‐ECM interactions, promoting fibroblast activation. There is a need for bio‐instructive ECM models that match the ECM composition and biomechanics of the lung to study these cell‐matrix interactions in vitro. Here, a synthetic, bioactive hydrogel is synthesized that mimics the native lung modulus and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin‐binding and matrix metalloproteinase (MMP)‐mediated degradation in the lung, which enables quiescent culture of human lung fibroblasts (HLFs). Stimulation with transforming growth factor β1 (TGF‐β1), metastatic breast cancer conditioned media (CM), or tenascin‐C‐derived integrin‐binding peptide activated hydrogel‐encapsulated HLFs demonstrates multiple environmental methods to activate HLFs in a lung ECM‐mimicking hydrogel. This lung hydrogel platform is a tunable, synthetic approach to studying the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.

     
    more » « less