skip to main content


Title: Glycosaminoglycans affect endothelial to mesenchymal transformation, proliferation, and calcification in a 3D model of aortic valve disease
Calcific nodules form in the fibrosa layer of the aortic valve in calcific aortic valve disease (CAVD). Glycosaminoglycans (GAGs), which are normally found in the valve spongiosa, are located local to calcific nodules. Previous work suggests that GAGs induce endothelial to mesenchymal transformation (EndMT), a phenomenon described by endothelial cells’ loss of the endothelial markers, gaining of migratory properties, and expression of mesenchymal markers such as alpha smooth muscle actin (α-SMA). EndMT is known to play roles in valvulogenesis and may provide a source of activated fibroblast with a potential role in CAVD progression. In this study, a 3D collagen hydrogel co-culture model of the aortic valve fibrosa was created to study the role of EndMT-derived activated valvular interstitial cell behavior in CAVD progression. Porcine aortic valve interstitial cells (PAVIC) and porcine aortic valve endothelial cells (PAVEC) were cultured within collagen I hydrogels containing the GAGs chondroitin sulfate (CS) or hyaluronic acid (HA). The model was used to study alkaline phosphatase (ALP) enzyme activity, cellular proliferation and matrix invasion, protein expression, and calcific nodule formation of the resident cell populations. CS and HA were found to alter ALP activity and increase cell proliferation. CS increased the formation of calcified nodules without the addition of osteogenic culture medium. This model has applications in the improvement of bioprosthetic valves by making replacements more micro-compositionally dynamic, as well as providing a platform for testing new pharmaceutical treatments of CAVD.  more » « less
Award ID(s):
1919438
NSF-PAR ID:
10380066
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Cardiovascular Medicine
Volume:
9
ISSN:
2297-055X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Calcific aortic valve disease (CAVD) is an active pathobiological process leading to severe aortic stenosis, where the only treatment is valve replacement. Late-stage CAVD is characterized by calcification, disorganization of collagen, and deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa. We developed a three-dimensional microfluidic device of the aortic valve fibrosa to study the effects of shear stress (1 or 20 dyne per cm 2 ), CS (1 or 20 mg mL −1 ), and endothelial cell presence on calcification. CAVD chips consisted of a collagen I hydrogel, where porcine aortic valve interstitial cells were embedded within and porcine aortic valve endothelial cells were seeded on top of the matrix for up to 21 days. Here, we show that this CAVD-on-a-chip is the first to develop human-like calcified nodules varying in calcium phosphate mineralization maturity resulting from high shear and endothelial cells, specifically di- and octa-calcium phosphates. Long-term co-culture microfluidic studies confirmed cell viability and calcium phosphate formations throughout 21 days. Given that CAVD has no targeted therapies, the creation of a physiologically relevant test-bed of the aortic valve could lead to advances in preclinical studies. 
    more » « less
  2. Introduction: Calcific aortic valve disease (CAVD) is an active pathological process leading to severe valve calcification. Late-stage CAVD is characterized by increased leaflet stiffness, disorganized collagen bundles and the deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa layer. However, many details of the cellular pathological cascade remain unknown. Animal models such as mice, rabbits, and pigs are used in understanding human CAVD, but mice do not have similar anatomy, rabbits cannot spontaneously develop atherosclerotic lesions, and pigs require long, expensive and complex studies. Here we utilize microfluidic devices of the aortic valve fibrosa to model late-stage CAVD. Hypothesis: We assessed the hypothesis that microfluidic calcification will increase with increased shear rates and CS content. Methods: Valve-on-a-chip devices contained a hydrogel of 1.5 mg/mL collagen I-only healthy controls or 1.5 mg/mL collagen I with 1 mg/mL or 20 mg/mL CS. Porcine aortic valve interstitial cells (PAVIC) were embedded within and endothelial cells (PAVEC) were seeded onto the matrix. Steady shear stress at 1 dyne/cm 2 and 20 dyne/cm 2 were applied using a peristaltic pump for 14 days. Alizarin Red S (ARS), an assay to assess calcium deposition, was used to quantify calcific nodule formation. Scanning electron microscopy with energy dispersive x-ray (SEM/EDX) was used to further analyze sample mineralization. Results: Co-cultures in the presence of increasing shear stress and CS exhibit increased calcific nodule formation compared to static controls, both qualitatively and quantitatively (n≥3). SEM revealed the microstructure of calcified nodules and EDX confirmed calcium phosphate mineralization with physiologically-relevant calcium to phosphorous ratios (Ca/P= 0.88 - 1.4). Conclusions: These results show that in vitro calcification is driven by shear stress in the presence of PAVEC and CS. As seen in ex vivo studies of human calcification, these microfluidic-derived nodules are similarly composed of a range of naturally-occurring calcium phosphates. Given that CAVD has no targeted therapy, the creation of a physiologically relevant model of the aortic valve can provide a test bed for novel therapeutic interventions. 
    more » « less
  3. null (Ed.)
    Abstract Background Calcific aortic valve disease (CAVD) pathophysiology is a complex, multistage process, usually diagnosed at advanced stages after significant anatomical and hemodynamic changes in the valve. Early detection of disease progression is thus pivotal in the development of prevention and mitigation strategies. In this study, we developed a diet-based, non-genetically modified mouse model for early CAVD progression, and explored the utility of two-photon excited fluorescence (TPEF) microscopy for early detection of CAVD progression. TPEF imaging provides label-free, non-invasive, quantitative metrics with the potential to correlate with multiple stages of CAVD pathophysiology including calcium deposition, collagen remodeling and osteogenic differentiation. Methods Twenty-week old C57BL/6J mice were fed either a control or pro-calcific diet for 16 weeks and monitored via echocardiography, histology, immunohistochemistry, and quantitative polarized light imaging. Additionally, TPEF imaging was used to quantify tissue autofluorescence (A) at 755 nm, 810 nm and 860 nm excitation, to calculate TPEF 755–860 ratio (A 860/525 /(A 755/460  + A 860/525 )) and TPEF Collagen-Calcium ratio (A 810/525 /(A 810/460  + A 810/525 )) in the murine valves. In a separate experiment, animals were fed the above diets till 28 weeks to assess for later-stage calcification. Results Pro-calcific mice showed evidence of lipid deposition at 4 weeks and calcification at 16 weeks at the valve commissures. The valves of pro-calcific mice also showed positive expression for markers of osteogenic differentiation, myofibroblast activation, proliferation, inflammatory cytokines and collagen remodeling. Pro-calcific mice exhibited lower TPEF autofluorescence ratios, at locations coincident with calcification, that correlated with increased collagen disorganization and positive expression of osteogenic markers. Additionally, locations with lower TPEF autofluorescence ratios at 4 and 16 weeks exhibited increased calcification at later 28-week timepoints. Conclusions This study suggests the potential of TPEF autofluorescence metrics to serve as a label-free tool for early detection and monitoring of CAVD pathophysiology. 
    more » « less
  4. Normal fibroblasts are present within the extracellular matrix (ECM). They can become activated, leading to increased proliferation and ECM protein secretion such as collagen type I to promote tissue remodeling. These cells are also involved in adult pathologies including cancer metastasis and cardiac and renal fibrosis. One source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT), in which endothelial cells lose their cell–cell and cell–ECM adhesions, gain invasive properties, and become mesenchymal cells. While EndMT is well characterized in developmental biology, the mechanisms and functional role of EndMT in adult physiology and pathology have not been fully investigated. A microfluidic device with an incorporated three-dimensional ECM chamber was developed to study the role of combined steady fluid shear stress magnitudes and transforming growth factor-βeta 1 (TGF-β1) on EndMT. Low (1 dyne per cm 2 ) steady shear stress and TGF-β1 exposure induced EndMT in endothelial cells, including upregulation of mesenchymal protein and gene expression markers. Cells exposed to TGF-β1 and high (20 dynes per cm 2 ) steady shear stress did not undergo EndMT, and protein and gene expression of mesenchymal markers was significantly downregulated. Mesenchymally transformed cells under static conditions with and without TGF-β1 showed significantly more collagen production when compared to fluidic conditions. These results confirm that both low shear stress and TGF-β1 induce EndMT in endothelial cells, but this process can be prevented by exposure to physiologically relevant high shear stress. These results also show conditions most likely to cause tissue pathology. 
    more » « less
  5. Clinically serious congenital heart valve defects arise from improper growth and remodeling of endocardial cushions into leaflets. Genetic mutations have been extensively studied but explain less than 20% of cases. Mechanical forces generated by beating hearts drive valve development, but how these forces collectively determine valve growth and remodeling remains incompletely understood. Here, we decouple the influence of those forces on valve size and shape, and study the role of YAP pathway in determining the size and shape. The low oscillatory shear stress promotes YAP nuclear translocation in valvular endothelial cells (VEC), while the high unidirectional shear stress restricts YAP in cytoplasm. The hydrostatic compressive stress activated YAP in valvular interstitial cells (VIC), whereas the tensile stress deactivated YAP. YAP activation by small molecules promoted VIC proliferation and increased valve size. Whereas YAP inhibition enhanced the expression of cell-cell adhesions in VEC and affected valve shape. Finally, left atrial ligation was performed in chick embryonic hearts to manipulate the shear and hydrostatic stress in vivo. The restricted flow in the left ventricle induced a globular and hypoplastic left atrioventricular (AV) valves with an inhibited YAP expression. By contrast, the right AV valves with sustained YAP expression grew and elongated normally. This study establishes a simple yet elegant mechanobiological system by which transduction of local stresses regulates valve growth and remodeling. This system guides leaflets to grow into proper sizes and shapes with the ventricular development, without the need of a genetically prescribed timing mechanism. 
    more » « less