skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Targeted Insertion of the mPing Transposable Element
Class II DNA Transposable Elements (TEs) are moved from one location to another in the genome by the action of transposase proteins that bind to repeat sequences at the ends of the elements. Although the location TE insertion is mostly random, the addition of DNA binding domains to the transposase proteins has allowed for targeted insertion of some elements. In this study, the Gal4 binding domain was added to the transposase proteins, ORF1 and TPase, which mobilize the mPing element from rice. The Gal4:TPase construct was capable of increasing the number of mPing insertions into the Gal2 and Gal4 promoter sequences in yeast. While this confirms that mPing insertion preference can be manipulated, the target specificity is relatively low. Thus, the CRISPR/Cas9 system was tested for its ability to generate targeted insertion of mPing. A dCas9:TPase fusion protein had a low transposition rate suggesting that the addition of this large protein disrupts TPase function. Unfortunately, the use of a MS2 binding domain to localize the TPase to the MS2 hairpin containing gRNA failed to produce targeted insertion. Thus, our results suggest that the addition of small DNA binding domain to the N-terminal of TPase is the best strategy for targeted insertion of mPing.  more » « less
Award ID(s):
1444581
PAR ID:
10081484
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of the South Carolina Academy of Science
Volume:
16
Issue:
1
ISSN:
1553-5975
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundDNA transposable elements are mobilized by a “cut and paste” mechanism catalyzed by the binding of one or more transposase proteins to terminal inverted repeats (TIRs) to form a transpositional complex. Study of the rice genome indicates that themPingelement has experienced a recent burst in transposition compared to the closely relatedPingandPongelements. A previously developed yeast transposition assay allowed us to probe the role of both internal and terminal sequences in the mobilization of these elements. ResultsWe observed thatmPingand a syntheticmPongelement have significantly higher transposition efficiency than the related autonomousPingandPongelements. Systematic mutation of the internal sequences of bothmPingandmPongidentified multiple regions that promote or inhibit transposition. Simultaneous alteration of single bases on bothmPingTIRs resulted in a significant reduction in transposition frequency, indicating that each base plays a role in efficient transposase binding. Testing chimericmPingandmPongelements verified the important role of both the TIRs and internal regulatory regions.Previous experiments showed that the G at position 16, adjacent to the 5′ TIR, allows mPingto have higher mobility. Alteration of the 16th and 17th base frommPing’s3′ end or replacement of the 3′ end withPong3′ sequences significantly increased transposition frequency. ConclusionsAs the transposase proteins were consistent throughout this study, we conclude that the observed transposition differences are due to the element sequences. The presence of sub-optimal internal regions and TIR bases supports a model in which transposable elements self-limit their activity to prevent host damage and detection by host regulatory mechanisms. Knowing the role of the TIRs, adjacent sub-TIRs, and internal regulatory sequences allows for the creation of hyperactive elements. 
    more » « less
  2. Genomes of all characterized higher eukaryotes harbor examples of transposable element (TE) bursts—the rapid amplification of TE copies throughout a genome. Despite their prevalence, understanding how bursts diversify genomes requires the characterization of actively transposing TEs before insertion sites and structural rearrangements have been obscured by selection acting over evolutionary time. In this study, rice recombinant inbred lines (RILs), generated by crossing a bursting accession and the reference Nipponbare accession, were exploited to characterize the spread of the very active Ping / mPing family through a small population and the resulting impact on genome diversity. Comparative sequence analysis of 272 individuals led to the identification of over 14,000 new insertions of the mPing miniature inverted-repeat transposable element (MITE), with no evidence for silencing of the transposase-encoding Ping element. In addition to new insertions, Ping -encoded transposase was found to preferentially catalyze the excision of mPing loci tightly linked to a second mPing insertion. Similarly, structural variations, including deletion of rice exons or regulatory regions, were enriched for those with break points at one or both ends of linked mPing elements. Taken together, these results indicate that structural variations are generated during a TE burst as transposase catalyzes both the high copy numbers needed to distribute linked elements throughout the genome and the DNA cuts at the TE ends known to dramatically increase the frequency of recombination. 
    more » « less
  3. Introduction: Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a “cut and paste” transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived mPing element have been observed to increase in copy number over time. Methods: We used yeast transposition assays to test several parameters that could affect the excision and insertion of mPing and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Results: Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Discussion: Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes. 
    more » « less
  4. Abstract Background Transposable elements (TEs) are selfish DNA sequences capable of moving and amplifying at the expense of host cells. Despite this, an increasing number of studies have revealed that TE proteins are important contributors to the emergence of novel host proteins through molecular domestication. We previously described seven transposase-derived domesticated genes from the PIF/Harbinger DNA family of TEs in Drosophila and a co-domestication. All PIF TEs known in plants and animals distinguish themselves from other DNA transposons by the presence of two genes. We hypothesize that there should often be co-domestications of the two genes from the same TE because the transposase (gene 1) has been described to be translocated to the nucleus by the MADF protein (gene 2). To provide support for this model of new gene origination, we investigated available insect species genomes for additional evidence of PIF TE domestication events and explored the co-domestication of the MADF protein from the same TE insertion. Results After the extensive insect species genomes exploration of hits to PIF transposases and analyses of their context and evolution, we present evidence of at least six independent PIF transposable elements proteins domestication events in insects: two co-domestications of both transposase and MADF proteins in Anopheles (Diptera), one transposase-only domestication event and one co-domestication in butterflies and moths (Lepidoptera), and two transposases-only domestication events in cockroaches (Blattodea). The predicted nuclear localization signals for many of those proteins and dicistronic transcription in some instances support the functional associations of co-domesticated transposase and MADF proteins. Conclusions Our results add to a co-domestication that we previously described in fruit fly genomes and support that new gene origination through domestication of a PIF transposase is frequently accompanied by the co-domestication of a cognate MADF protein in insects, potentially for regulatory functions. We propose a detailed model that predicts that PIF TE protein co-domestication should often occur from the same PIF TE insertion. 
    more » « less
  5. Insertion sequences are compact and pervasive transposable elements found in bacteria, which encode only the genes necessary for their mobilization and maintenance1. IS200- and IS605-family transposons undergo ‘peel-and-paste’ transposition catalysed by a TnpA transposase2, but they also encode diverse, TnpB- and IscB-family proteins that are evolutionarily related to the CRISPR-associated effectors Cas12 and Cas9, respectively3,4. Recent studies have demonstrated that TnpB and IscB function as RNA-guided DNA endonucleases5,6, but the broader biological role of this activity has remained enigmatic. Here we show that TnpB and IscB are essential to prevent permanent transposon loss as a consequence of the TnpA transposition mechanism. We selected a family of related insertion sequences from Geobacillus stearothermophilus that encode several TnpB and IscB orthologues, and showed that a single TnpA transposase was broadly active for transposon mobilization. The donor joints formed upon religation of transposon-flanking sequences were efficiently targeted for cleavage by RNA-guided TnpB and IscB nucleases, and co-expression of TnpB and TnpA led to substantially greater transposon retention relative to conditions in which TnpA was expressed alone. Notably, TnpA and TnpB also stimulated recombination frequencies, surpassing rates observed with TnpB alone. Collectively, this study reveals that RNA-guided DNA cleavage arose as a primal biochemical activity to bias the selfish inheritance and spread of transposable elements, which was later co-opted during the evolution of CRISPR–Cas adaptive immunity for antiviral defence. TnpB and IscB nucleases use transposon-encoded guide RNAs to target genomic sequences for cleavage, thereby favouring copying and spreading of transposable elements. 
    more » « less