skip to main content


Title: Prediction of Driver Modules via Balancing Exclusive Coverages of Mutations in Cancer Samples
Abstract

Mutual exclusivity of cancer driving mutations is a frequently observed phenomenon in the mutational landscape of cancer. The long tail of rare mutations complicates the discovery of mutually exclusive driver modules. The existing methods usually suffer from the problem that only few genes in some identified modules cover most of the cancer samples. To overcome this hurdle, an efficient method UniCovEx is presented via identifying mutually exclusive driver modules of balanced exclusive coverages. UniCovEx first searches for candidate driver modules with a strong topological relationship in signaling networks using a greedy strategy. It then evaluates the candidate modules by considering their coverage, exclusivity, and balance of coverage, using a novel metric termed exclusive entropy of modules, which measures how balanced the modules are. Finally, UniCovEx predicts sample‐specific driver modules by solving a minimum set cover problem using a greedy strategy. When tested on 12 The Cancer Genome Atlas datasets of different cancer types, UniCovEx shows a significant superiority over the previous methods. The software is available at:https://sourceforge.net/projects/cancer‐pathway/files/.

 
more » « less
NSF-PAR ID:
10081713
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
6
Issue:
4
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    The somatic mutations in the pathways that drive cancer development tend to be mutually exclusive across tumors, providing a signal for distinguishing driver mutations from a larger number of random passenger mutations. This mutual exclusivity signal can be confounded by high and highly variable mutation rates across a cohort of samples. Current statistical tests for exclusivity that incorporate both per-gene and per-sample mutational frequencies are computationally expensive and have limited precision.

    Results

    We formulate a weighted exact test for assessing the significance of mutual exclusivity in an arbitrary number of mutational events. Our test conditions on the number of samples with a mutation as well as per-event, per-sample mutation probabilities. We provide a recursive formula to compute P-values for the weighted test exactly as well as a highly accurate and efficient saddlepoint approximation of the test. We use our test to approximate a commonly used permutation test for exclusivity that conditions on per-event, per-sample mutation frequencies. However, our test is more efficient and it recovers more significant results than the permutation test. We use our Weighted Exclusivity Test (WExT) software to analyze hundreds of colorectal and endometrial samples from The Cancer Genome Atlas, which are two cancer types that often have extremely high mutation rates. On both cancer types, the weighted test identifies sets of mutually exclusive mutations in cancer genes with fewer false positives than earlier approaches.

    Availability and Implementation

    See http://compbio.cs.brown.edu/projects/wext for software.

    Contact

    braphael@cs.brown.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract

    Motivation: Cancer is the process of accumulating genetic alterations that confer selective advantages to tumor cells. The order in which aberrations occur is not arbitrary, and inferring the order of events is challenging due to the lack of longitudinal samples from tumors. Moreover, a network model of oncogenesis should capture biological facts such as distinct progression trajectories of cancer subtypes and patterns of mutual exclusivity of alterations in the same pathways.

    In this paper, we present the disjunctive Bayesian network (DBN), a novel oncogenetic model with a phylogenetic interpretation. DBN is expressive enough to capture cancer subtypes' trajectories and mutually exclusive relations between alterations from unstratified data.

    Results: In cases where the number of studied alterations is small (), we provide an efficient dynamic programming implementation of an exact structure learning method that finds a best DBN in the superexponential search space of networks. In rare cases that the number of alterations is large, we provided an efficient genetic algorithm in our software package, OncoBN. Through numerous synthetic and real data experiments, we show OncoBN's ability in inferring ground truth networks and recovering biologically meaningful progression networks.

    Availability: OncoBN is implemented in R and is available athttps://github.com/phillipnicol/OncoBN.

     
    more » « less
  3. Abstract Background/objectives

    While outcomes for pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) are favorable, there are few widely accepted prognostic factors, limiting the ability to risk stratify therapy.

    Design/methods

    Dana‐Farber Cancer Institute (DFCI) Protocols 05‐001 and 11‐001 enrolled pediatric patients with newly diagnosed B‐ or T‐ALL from 2005 to 2011 and from 2012 to 2015, respectively. Protocol therapy was nearly identical for patients with T‐ALL (N = 123), who were all initially assigned to the high‐risk arm. End‐induction minimal residual disease (MRD) was assessed by reverse transcription polymerase chain reaction (RT‐PCR) or next‐generation sequencing (NGS), but was not used to modify postinduction therapy. Early T‐cell precursor (ETP) status was determined by flow cytometry. Cases with sufficient diagnostic DNA were retrospectively evaluated by targeted NGS of known genetic drivers of T‐ALL, including Notch, PI3K, and Ras pathway genes.

    Results

    The 5‐year event‐free survival (EFS) and overall survival (OS) for patients with T‐ALL was 81% (95% CI, 73‐87%) and 90% (95% CI, 83‐94%), respectively. ETP phenotype was associated with failure to achieve complete remission, but not with inferior OS. Low end‐induction MRD (<10−4) was associated with superior disease‐free survival (DFS). Pathogenic mutations of the PI3K pathway were mutually exclusive of ETP phenotype and were associated with inferior 5‐year DFS and OS.

    Conclusions

    Together, our findings demonstrate that ETP phenotype, end‐induction MRD, and PI3K pathway mutation status are prognostically relevant in pediatric T‐ALL and should be considered for risk classification in future trials. DFCI Protocols 05‐001 and 11‐001 are registered atwww.clinicaltrials.govas NCT00165087 and NCT01574274, respectively.

     
    more » « less
  4. Abstract

    We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

     
    more » « less
  5. Abstract Background

    Crop improvement through cross-population genomic prediction and genome editing requires identification of causal variants at high resolution, within fewer than hundreds of base pairs. Most genetic mapping studies have generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects at high resolution, but they are limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Here we use genomic annotations to accurately predict nucleotide conservation across angiosperms, as a proxy for fitness effect of mutations.

    Results

    Using only sequence analysis, we annotate nonsynonymous mutations in 25,824 maize gene models, with information from bioinformatics and deep learning. Our predictions are validated by experimental information: within-species conservation, chromatin accessibility, and gene expression. According to gene ontology and pathway enrichment analyses, predicted nucleotide conservation points to genes in central carbon metabolism. Importantly, it improves genomic prediction for fitness-related traits such as grain yield, in elite maize panels, by stringent prioritization of fewer than 1% of single-site variants.

    Conclusions

    Our results suggest that predicting nucleotide conservation across angiosperms may effectively prioritize sites most likely to impact fitness-related traits in crops, without being limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Our approach—Prediction of mutation Impact by Calibrated Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for accurate genomic prediction, and candidate mutations for efficient base editing. The trained PICNC models and predicted nucleotide conservation at protein-coding SNPs in maize are publicly available in CyVerse (https://doi.org/10.25739/hybz-2957).

     
    more » « less