skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Summer education in nano- and biological approaches to protect plants against drought stress
An 8-week summer research experience for undergraduates was developed at Utah State University to train participants in nanotechnology and microbiome engineering approaches that the participants applied to improve plant resilience to stress and enhance food production. Nine participants from two-year colleges serving predominantly Native American and Hispanic populations were recruited with the aim of providing these students the confidence, skills, and passion for life-long learning to complete a four-year STEM degree and beyond. An interdisciplinary approach introduced students to nanotechnology, plant-microbiome functioning, and soilless growth platforms, demonstrating needs for diversity in skills and teamwork in solving problems. Six weeks of guided research modules were followed by student-designed projects conducted as small groups. Students synthesized and characterized nanoparticles, assessed mechanical properties of plants, isolated endophytic bacteria from wheat seed, and assessed the plant-protective properties imparted by the endophyte contrasted with a known root-colonizing beneficial microbe. Distinct responses of the two microbes to metal oxide nanoparticles having micronutrient and pesticide applications in agriculture demonstrated that nano-formulations may rapidly shift microbial populations based on susceptibility to nanoparticles / released ions. Participants gained a broad overview of nanotechnology and microbiome engineering as sustainable approaches for advancing plant productivity and agriculture under abiotic stress.  more » « less
Award ID(s):
1335550
PAR ID:
10081735
Author(s) / Creator(s):
Date Published:
Journal Name:
Sustainable Nanotechnology Organization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shepherd, Virginia L; Chester, Ann; Bass, Kristin M (Ed.)
    Sustained innovation and economic strength of the U.S depends on a greater participation of underrepresented minorities in science, technology, engineering, and mathematics (STEM). University-based outreach programs that serve African American and other minority populations should do more to infuse invention education in activities that engage pre-college students from these groups to motivate them to pursue STEM degrees. The Research, Discovery, and Innovation (RDI) Summer Institute is a design and science entrepreneurship program that is offered at North Carolina Central University to high school seniors who have been accepted for admission to a STEM degree program at the university. This study found the RDI Summer Institute program to be effective based on proximal outcomes of gains in composite entrepreneurial thinking skills (entrepreneurial, managerial, engineering design, and technical skills) as perceived by the participants and measured by pre- and post-surveys. Eighty-seven percent of the pre-college participants were African Americans, showed high levels of creativity and innovativeness, and presented product ideas that were conscientious in meeting their community needs. Program impact was assessed based on near-term and distal academic outcomes in college through a rigorously designed quasi-experiment which compared 31 case-control matched pairs of students who had been RDI participants and non-RDI participants. A conditional logistic regression showed first-year retention in STEM degree programs for students who had been RDI participants was five times that of students who had been non-RDI participants. Additionally, first-year STEM retention in differential comparisons favored female students, students from very low/low SES households, and students from single parent households. Also, students who had been RDI participants performed higher in STEM gatekeeper courses, and a strong positive impact of the RDI Summer Institute program was associated with higher STEM persistence even two and three years after pre-college students participated. 
    more » « less
  2. Abstract At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering. 
    more » « less
  3. This study aims to investigate the development of creativity in engineering education and how spatial skills relate to creativity of design solutions. Undergraduate students in the first (n=86) and fourth/fifth year (n=48) of their engineering programme were invited to participate. Students completed four spatial tests to precisely measure visualisation skills. In a separate session, students were invited back to solve two engineering design tasks: a ping pong problem where they designed a ping pong ball launcher game to meet specified criteria and a rain catcher problem where they were tasked with developing as many ideas for capturing rainwater as a water source for a remote location as they could. Students were asked not to consider feasibility, cost, etc. and to come up multiple radical solutions to the rainwater capture problem. The creativity of design solutions was assessed using Adaptive Comparative Judgement. Statistical analysis indicated significant relationships between spatial skills, students’ year of study and gender. A statistically significant relationship was also found between students’ creativity scores on both design challenges. No statistical differences were determined in the creativity of first and fourth/fifth year students’ solutions. These findings will be discussed relative to existing research, future work, and potential implications for education practice. 
    more » « less
  4. This research paper describes work performed at a large midwestern university in the U.S. examining the link between spatial skills and design performance. Spatial skills are vital to success in engineering education and their relation to efficient problem-solving is wellresearched. This study is part of a larger project focusing on understanding the link between spatial visualization skills and solving engineering design problems. In the current study, we made use of an eye-tracking device to determine the visual focus of participants while they solved an assigned design task. High and low spatial visualizers in undergraduate engineering were identified through Phase I testing. In Phase 1, students completed four widely accepted spatial ability tests. Subsequently, some students were invited to participate in a Phase 2 design problem-solving activity wearing the Tobii Pro Glasses 3 to collect eye tracking data to gain insight into the design problem-solving behaviors based on information collected about participants’ eye movement fixations (i.e. duration and location). In this paper, we report on the analysis conducted through Tobii Pro Lab research software involving 13 study participants of whom 7 (1 female, 6 male: 3 first-year, 4 senior-year) were high spatial visualizers while 6 (3 female, 3 male; 4 first-year, 2 senior-year) were low spatial visualizers. Findings from the study suggest that the solutions produced by the high visualizers were more graphical compared to low visualizers. Low visualizers focused more on the problem statement, spending more time reading it and coming back to it compared to high visualizers who remained in the problem solution area for most of the problem-solving session. Recognizing the importance of spatial abilities in design problem-solving, educators can incorporate activities and exercises aimed at developing spatial skills among students which could include spatial reasoning tasks, visualization exercises, and hands-on design projects. 
    more » « less
  5. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.1 mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.2 mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.3 report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less