skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beta Probabilistic Databases: A Scalable Approach to Belief Updating and Parameter Learning
Tuple-independent probabilistic databases (TI-PDBs) han- dle uncertainty by annotating each tuple with a probability parameter; when the user submits a query, the database de- rives the marginal probabilities of each output-tuple, assum- ing input-tuples are statistically independent. While query processing in TI-PDBs has been studied extensively, limited research has been dedicated to the problems of updating or deriving the parameters from observations of query results . Addressing this problem is the main focus of this paper. We introduce Beta Probabilistic Databases (B-PDBs), a general- ization of TI-PDBs designed to support both (i) belief updat- ing and (ii) parameter learning in a principled and scalable way. The key idea of B-PDBs is to treat each parameter as a latent, Beta-distributed random variable. We show how this simple expedient enables both belief updating and pa- rameter learning in a principled way, without imposing any burden on regular query processing. We use this model to provide the following key contributions: (i) we show how to scalably compute the posterior densities of the parameters given new evidence; (ii) we study the complexity of perform- ing Bayesian belief updates, devising efficient algorithms for tractable classes of queries; (iii) we propose a soft-EM algo- rithm for computing maximum-likelihood estimates of the parameters; (iv) we show how to embed the proposed algo- rithms into a standard relational engine; (v) we support our conclusions with extensive experimental results.  more » « less
Award ID(s):
1409551 1640864
PAR ID:
10082030
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2017 ACM International Conference on Management of Data
Page Range / eLocation ID:
573 to 586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Probabilistic databases (PDBs) provide users with a principled way to query data that is incomplete or imprecise. In this work, we study computing expected multiplicities of query results over probabilistic databases under bag semantics which has PTIME data complexity. However, does this imply that bag probabilistic databases are practical? We strive to answer this question from both a theoretical as well as a systems perspective. We employ concepts from fine-grained complexity to demonstrate that exact bag probabilistic query processing is fundamentally less efficient than deterministic bag query evaluation, but that fast approximations are possible by sampling monomials from a circuit representation of a result tuple's lineage. A remaining issue, however, is that constructing such circuits, while in PTIME, can nonetheless have significant overhead. To avoid this cost, we utilize approximate query processing techniques to directly sample monomials without materializing lineage upfront. Our implementation inFastPDBprovides accurate anytime approximation of probabilistic query answers and scales to datasets orders of magnitude larger than competing methods. 
    more » « less
  2. Deep learning and symbolic reasoning are complementary techniques for an intelligent system. However, principled combinations of these techniques are typically limited in scalability, rendering them ill-suited for real-world applications. We propose Scallop, a system that builds upon probabilistic deductive databases, to bridge this gap. The key insight underlying Scallop is a provenance framework that introduces a tunable parameter to specify the level of reasoning granularity. Scallop thereby i) generalizes exact probabilistic reasoning, ii) asymptotically reduces computational cost, and iii) provides relative accuracy guarantees. On synthetic tasks involving mathematical and logical reasoning, Scallop scales significantly better without sacrificing accuracy compared to DeepProbLog, a principled neural logic programming approach. Scallop also scales to a newly created real-world Visual Question Answering (VQA) benchmark that requires multi-hop reasoning, achieving 84.22% accuracy and outperforming two VQA-tailored models based on Neural Module Networks and transformers by 12.42% and 21.66% respectively. 
    more » « less
  3. In probabilistic databases the data is uncertain and is modeled by a probability distribution. The central problem in probabilistic databases is query evaluation, which requires performing not only traditional data processing such as joins, projections, unions, but also probabilistic inference in order to compute the probability of each item in the answer. At their core, probabilistic databases are a proposal to integrate logic with probability theory. This paper accompanies a talk given as part of the Gems of PODS series, and describes several results in probabilistic databases, explaining their significance in the broader context of model counting, probabilistic inference, and Statistical Relational Models. 
    more » « less
  4. In this paper, we consider secure outsourced growing databases (SOGDB) that support view-based query answering. These databases allow untrusted servers to privately maintain a materialized view. This allows servers to use only the materialized view for query processing instead of accessing the original data from which the view was derived. To tackle this, we devise a novel view-based SOGDB framework, Incshrink. The key features of this solution are: (i) Incshrink maintains the view using incremental MPC operators which eliminates the need for a trusted third party upfront, and (ii) to ensure high performance, Incshrink guarantees that the leakage satisfies DP in the presence of updates. To the best of our knowledge, there are no existing systems that have these properties. We demonstrate Incshrink's practical feasibility in terms of efficiency and accuracy with extensive experiments on real-world datasets and the TPC-ds benchmark. The evaluation results show that Incshrink provides a 3-way trade-off in terms of privacy, accuracy and efficiency, and offers at least a 7,800x performance advantage over standard SOGDB that do not support view-based query paradigm. 
    more » « less
  5. We will demonstrate a prototype query-processing engine, which utilizes correlations among predicates to accelerate machine learning (ML) inference queries on unstructured data. Expensive operators such as feature extractors and classifiers are deployed as user-defined functions (UDFs), which are not penetrable by classic query optimization techniques such as predicate push-down. Recent optimization schemes (e.g., Probabilistic Predicates or PP) build a cheap proxy model for each predicate offline, and inject proxy models in the front of expensive ML UDFs under the independence assumption in queries. Input records that do not satisfy query predicates are filtered early by proxy models to bypass ML UDFs. But enforcing the independence assumption may result in sub-optimal plans. We use correlative proxy models to better exploit predicate correlations and accelerate ML queries. We will demonstrate our query optimizer called CORE, which builds proxy models online, allocates parameters to each model, and reorders them. We will also show end-to-end query processing with or without proxy models. 
    more » « less