skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymeric coatings for applications in electrocatalytic and photoelectrosynthetic fuel production
Applications of polymeric coatings have emerged as a promising direction for preparing multilayered assemblies and controlling surface properties. In addition to providing a foundation for interfacing soft materials onto solid supports, polymers afford opportunities to develop hybrid constructs with properties difficult to achieve using monolayer-based chemical modification methods. In particular, the microenvironments of polymers are proposed to facilitate charge transfer to redox-active sites, manage delivery of chemical substrates, improve product specificity during catalytic transformations, and lend chemical protection to underpinning solid-state supports as well as embedded components. In this article, we highlight selected examples of polymeric materials utilized in electrocatalytic and photoelectrosynthetic fuel production.  more » « less
Award ID(s):
1653982
PAR ID:
10082154
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
44
ISSN:
2050-7488
Page Range / eLocation ID:
21654 to 21665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymers are increasingly being used in higher demanding applications due to their ability to tailor the properties of structures while allowing for a weight and cost reduction. Solvents play an important role in the manufacture of polymeric structures since they allow for a reduction in the polymer’s viscosity or assist with the dispersion of fillers into the polymer matrix. However, the incorrect removal of the solvent affects both the physical and chemical properties of polymeric materials. The presence of residual solvent can also negatively affect the curing kinetics and the final quality of polymers. Destructive testing is mainly performed to characterize the properties of these materials. However, this type of testing involves using lab-type equipment that cannot be taken in-field to perform in situ testing and requires a specific sample preparation. Here, a method is presented to non-destructively evaluate the curing process and final viscoelastic properties of polymeric materials using ultrasonics. In this study, changes in longitudinal sound speed were detected during the curing of an aerospace epoxy adhesive as a result of variations in polymer chemistry. To simulate the presence of residual solvent, samples containing different weight percentages of isopropyl alcohol were manufactured and tested using ultrasonics. Thermogravimetric analysis was used to show changes in the decomposition of the adhesive due to the presence of IPA within the polymer structure. Adding 2, 4, and 6 wt.% of IPA decreased the adhesive’s lap shear strength by 40, 58, and 71%, respectively. Ultrasonics were used to show how the solvent influenced the curing process and the final sound speed of the adhesive. Young’s modulus and Poisson’s ratio were determined using both the longitudinal and shear sound speeds of the adhesive. Using ultrasonics has the potential to non-invasively characterize the quality of polymers in both an in-field and manufacturing settings, ensuring their reliability during use in demanding applications. 
    more » « less
  2. Metal-ion-containing soft materials include metallogels, metal-organic frameworks, and coordination polymers. These materials show commercial value in catalysis, hydrogen storage, and electronics. Metal-containing soft materials reported to date are structurally weak, falling short of a Young’s modulus typical of engineering-grade materials. We report herein that inclusion of an antisolvent in metal-thiolate metallogel synthesis results in a colloidal sol, where the colloids comprise amorphous metal-organic complexes. Upon desolvation, the colloids coalesce to form a solid phase that is both gel like and glass like. This solid phase is structurally amorphous, comprises continuous networks similar to organic polymers, and has stiffness observed in polymeric materials with extended structure, yet contains a superstoichiometric amount of metal relative to organic ligand. The solid phase is therefore a rigid, amorphous metal-rich (RAMETRIC) material. Highlighting the rigidity, the Young’s modulus of the gel-phase material is 1,000× greater than metallogels comprised of the same constituent building blocks. 
    more » « less
  3. Small differences in molecular or solid-state structure can afford significant differences in properties. Here, a diene derivative, 1,3-bis((E)-2-bromostyryl)benzene (2Brm), is synthesized and crystallized into two unique solid-state forms, each exhibiting a different π–π stacking geometry, which imparts distinct reactivity and photoresponsivity. Upon exposure of the two solids to UV–Vis light, a [2 + 2] photocycloaddition occurs to afford regioisomeric products due to the difference in the stacking geometries of the dienes. From a single molecular precursor, we further demonstrate that under different wavelengths of light, the chemical functionality can be programmed into discrete and distinct products containing one, two, or three cyclobutane rings as well as oligomeric/polymeric products. Moreover, the two initial solid forms exhibit wavelength-dependent photomechanical behaviors (i.e., photosalience). This work demonstrates a rare, template-free, self-assembly-based strategy that enables access to a suite of discrete and oligomeric/polymeric products via regiocontrolled solid-state photocycloadditions and further presents potential routes toward the design of photoactuating materials. 
    more » « less
  4. null (Ed.)
    MXene/polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. These composites have shown superior properties such as high light-to-heat conversion, excellent electromagnetic interference shielding, and high charge storage, compared to other nanocomposites. They have applications in chemical, materials, electrical, environmental, mechanical, and biomedical engineering as well as medicine. This property-based review on MXene/polymer nanocomposites critically describes findings and achievements in these areas and puts future research directions into perspective. It surveys novel reported applications of MXene-based polymeric nanocomposites. It also covers surface modification approaches that expand the applications of MXenes in nanocomposites. 
    more » « less
  5. Abstract Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine‐tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in‐depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas‐phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one‐step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry. 
    more » « less