skip to main content


Title: Assessment and Non-Destructive Evaluation of the Influence of Residual Solvent on a Two-Part Epoxy-Based Adhesive Using Ultrasonics
Polymers are increasingly being used in higher demanding applications due to their ability to tailor the properties of structures while allowing for a weight and cost reduction. Solvents play an important role in the manufacture of polymeric structures since they allow for a reduction in the polymer’s viscosity or assist with the dispersion of fillers into the polymer matrix. However, the incorrect removal of the solvent affects both the physical and chemical properties of polymeric materials. The presence of residual solvent can also negatively affect the curing kinetics and the final quality of polymers. Destructive testing is mainly performed to characterize the properties of these materials. However, this type of testing involves using lab-type equipment that cannot be taken in-field to perform in situ testing and requires a specific sample preparation. Here, a method is presented to non-destructively evaluate the curing process and final viscoelastic properties of polymeric materials using ultrasonics. In this study, changes in longitudinal sound speed were detected during the curing of an aerospace epoxy adhesive as a result of variations in polymer chemistry. To simulate the presence of residual solvent, samples containing different weight percentages of isopropyl alcohol were manufactured and tested using ultrasonics. Thermogravimetric analysis was used to show changes in the decomposition of the adhesive due to the presence of IPA within the polymer structure. Adding 2, 4, and 6 wt.% of IPA decreased the adhesive’s lap shear strength by 40, 58, and 71%, respectively. Ultrasonics were used to show how the solvent influenced the curing process and the final sound speed of the adhesive. Young’s modulus and Poisson’s ratio were determined using both the longitudinal and shear sound speeds of the adhesive. Using ultrasonics has the potential to non-invasively characterize the quality of polymers in both an in-field and manufacturing settings, ensuring their reliability during use in demanding applications.  more » « less
Award ID(s):
2122078
NSF-PAR ID:
10421436
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
13
Issue:
6
ISSN:
2076-3417
Page Range / eLocation ID:
3883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

     
    more » « less
  2. Abstract

    Waterborne pressure sensitive adhesives (PSAs) consisting of polymer microparticle emulsions (i.e. latex) are more commonly used in commercial applications than solvent‐borne alternatives, as the use of water as a suspension medium provides better consumer safety and reduces environmental impact. However, the lower mechanical performance of waterborne PSAs prevents their use in applications requiring permanent adhesion or strong bonding between substrates. This reduction in mechanical strength is often attributed to void spaces that form during water evaporation and coalescence of the latex particles, and thus a potential strategy to improve PSA strength would be to add filler materials to occupy these voids. Fundamental studies investigating how interfacial interactions between the latex and fillers affect the collective strength of the films would enable better design of adhesive compositions to tailor PSA mechanical properties. Here we report the use of polymer brush‐grafted nanoparticles (PGNPs) as a means of mechanically reinforcing the PSAs, and determine how different aspects of the particle and polymer brush designs enable this improvement in adhesive performance. The PGNPs investigated here are intentionally designed to phase segregate into the aqueous phase of the initial latex suspension, which allows them to both fill free pore volume and also form multivalent supramolecular interactions with the latex particles to form polymer bridges that improve the interconnectivity of the final film. These studies provide insight into potential design strategies for tuning PSA properties with PGNPs, and enable up to 32% improvements to the cohesive strength of the PSAs without the typical deterioration of adhesive strength observed in PSAs using non‐brush‐coated particle fillers.

     
    more » « less
  3. Rationale

    Simple, affordable, and rapid methods for identifying the molecular weight (MW) distribution and macromolecular composition of polymeric materials are limited. Current tools require extensive solvent consumption, linear calibrations, and expensive consumables. A simple method for the determination of average MW (Mn,Mw) and chain end groups is demonstrated for synthetic homopolymer standards using direct injection electrospray ionization‐mass spectrometry (ESI‐MS) and an open‐sourced charge deconvolution (CDC) algorithm.

    Methods

    Five homopolymer standards in the 1–7 kDa MW range were analyzed using direct‐injection ESI‐MS on a quadrupole/time‐of‐flight mass spectrometer. The samples investigated, viz. two poly(ethylene oxide) (PEO) and two poly(styrene sulfonic acid) (PSS) standards with narrow polydispersity and one poly(d,l‐alanine) (pAla) standard with undefined polydispersity, were chosen to illustrate challenges with ESI‐MS quantitation. Using the UniDec program, weight average MWs (Mw) obtained from the charge‐deconvoluted spectra were compared to the reportedMwdata of the standards from size exclusion chromatography (SEC) measurements.

    Results

    The MW data derived for the PSS, PEO, and pAla standards agreed well with the corresponding reportedMwor MW range values. The method was able to provide MW, degree of polymerization (DP), and polydispersity index (PDI) information for polymers with narrow (PSS, PEO) as well as broader (pAla) molecular weight distribution; this feature provides an advantage over MW analysis via matrix‐assisted laser desorption/ionization (MALDI) for ESI‐compatible materials. PSS standards differing in average MW by only a few repeat units could be confidently distinguished. Additionally, the oligomeric resolution observed for all samples studied unveiled chain‐end information not available through chromatographic analysis.

    Conclusions

    Overall, the free and easy‐to‐use UniDec CDC algorithm provides a simple, alternative method to measuring MW and DP for polymeric materials without high solvent consumption, expensive ionization sources, or calibration curves. Information about the masses of individual oligomers and the possibility to further characterize these oligomers using tandem mass spectrometry and/or ion mobility techniques constitutes additional benefits of this approach vis‐à‐vis traditional MW and PDI elucidation through SEC.

     
    more » « less
  4. Abstract

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol‐ene chemistry is employed to achieve rapid light‐curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol‐ene polymerized triacrylates are used as permanent filling materials at the dentin‐pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate‐based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs.

     
    more » « less
  5. Biocompatible and biodegradable materials have been used for fabricating polymeric microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal agent, using microneedles that were fabricated using a micromolding technique. The microneedle matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was used to determine the height and tip diameter for the microneedles. Nanoindentation was used to obtain the hardness and Young’s modulus values of the polymer. Load–displacement testing was used to assess the failure force of the needles under compressive loading. These two mechanical tests confirmed the mechanical properties of the needles. In vitro studies validated the presence of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical translation in terms of mechanical properties, sharpness, and antifungal properties. 
    more » « less