skip to main content


Title: Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation
Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O 2 is ironically not of high value. In fact, the co-production of H 2 and O 2 in conventional water electrolysis may result in the formation of explosive H 2 /O 2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H 2 evolution from water and avoid the generation of H 2 /O 2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H 2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H 2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H 2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed.  more » « less
Award ID(s):
1653978
NSF-PAR ID:
10082180
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
54
Issue:
47
ISSN:
1359-7345
Page Range / eLocation ID:
5943 to 5955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The electrocatalytic carbon dioxide reduction reaction (CO 2 RR) to produce valuable fuels and chemicals with renewable energy inputs is an attractive route to convert intermittent green energy sources ( e.g. , solar and wind) to chemical energy, alleviate our dependence on fossil fuels, and simultaneously reduce net carbon dioxide emission. However, the generation of reduced multi-carbon products with high energy density and wide applicability from the CO 2 RR, such as oxygenates and hydrocarbons, suffers from high overpotential, slow reaction rate, and low selectivity due to its intrinsic multi-electron transfer nature. Moreover, the involved anodic oxygen evolution reaction (OER) also requires large overpotential and its product O 2 bears limited economic value. The potentially generated reactive oxygen species (ROS) during the OER may also degrade the membrane of a CO 2 reduction electrolyzer. Herein, we review the recent progress in novel integrated strategies to address the aforementioned challenges in the electrocatalytic CO 2 RR. These innovative strategies include (1) concurrent CO 2 electroreduction via co-feeding additional chemicals besides CO 2 gas, (2) tandem CO 2 electroreduction utilizing other catalysts for converting the in situ formed products from the CO 2 RR into more valuable chemicals, and (3) hybrid CO 2 electroreduction through integrating thermodynamically more favourable organic upgrading reactions to replace the anodic OER. We specifically highlight these novel integrated electrolyzer designs instead of focusing on nanostructured engineering of various electrocatalysts, in the hope of inspiring others to approach CO 2 electroreduction from a holistic perspective. The current challenges and future opportunities of electrocatalytic CO 2 reduction will also be discussed at the end. 
    more » « less
  2. null (Ed.)
    Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. In this respect, a key strategy is the electrocatalytic hydrogenation (ECH) reaction, which is typically paired with the anodic oxygen evolution reaction (OER) with sluggish kinetics, producing O 2 with little value. Here we prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. We then considered the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and hydrogen (to water) as more efficient and productive alternatives to the OER. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ∼7.5 V to ∼2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained for BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ∼0.85 V at 10 mA. These paired processes show the potential for integration of renewable electricity and carbon for green and economically feasible distributed chemical manufacturing. 
    more » « less
  3. null (Ed.)
    Due to its clean and sustainable nature, solar energy has been widely recognized as a green energy source in driving a variety of reactions, ranging from small molecule activation and organic transformation to biomass valorization. Within this context, organic reactions coupled with H 2 evolution via semiconductor-based photocatalytic systems under visible light irradiation have gained increasing attention in recent years, which utilize both excited electrons and holes generated on semiconductors and produce two types of value-added products, organics and H 2 , simultaneously. Based on the nature of the organic reactions, in this review article we classify semiconductor-based photocatalytic organic transformations and H 2 evolution into three categories: (i) photocatalytic organic oxidation reactions coupled with H 2 production, including oxidative upgrading of alcohols and biomass-derived intermediate compounds; (ii) photocatalytic oxidative coupling reactions integrated with H 2 generation, such as C–C, C–N, and S–S coupling reactions; and (iii) photo-reforming reactions together with H 2 formation using organic plastics, pollutants, and biomass as the substrates. Representative heterogeneous photocatalytic systems will be highlighted. Specific emphasis will be placed on their synthesis, characterization, and photocatalytic mechanism, as well as the organic reaction scope and practical application. 
    more » « less
  4. Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. Paired electrolysis is an emerging platform for cogenerating high-valued chemicals from both the cathode and anode, potentially powered by renewable electricity from wind or solar sources. By pairing with an anodic biomass oxidation upgrading reaction, the elimination of the sluggish and less valuable water oxidation increases flow cell productivity and efficiency. In this presentation, we report our research progress on paired electrolsysis of HMF to production of higher valued chemicals in electrochemical flow cells. We first prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ~7.5 V to ~2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA. Next, we have demonstrated membrane electrode assembly (MEA)-based flow cells for the paired electrolysis of 5-(hydroxymethyl)furfural (HMF) paired electrolysis to bis(hydroxymethyl)furan (BHMF) and 2,5-furandicarboxylic acid (FDCA). In this work, the oxygen evolution reaction (OER) was substituted by TEMPO-mediated HMF oxidation, dropping the cell voltage was from 1.4 V to 0.7 V at a current density of 1.0 mA cm−2. A minimized cell voltage of ~1.5 V for a continuous 24 h co-electrolysis of HMF was then achieved at the current density of 2 mA cm−2(constant current of 10 mA), leading to the highest combined faradaic efficiency (FE) of 139% for HMF-to-BHMF and HMF-to-FDCA. A NiFe oxide catalyst on carbon cloth further replaced the anodic TEMPO mediator for HMF paired electrolysis in a pH-asymmetric flow cell. We envision renewable electrical energy can potentially drive the whole process, thus providing a sustainable avenue towards distributed, scalable, and energy-efficient electrosynthesis. 
    more » « less
  5. Thermochemical splitting of carbon dioxide to carbon-containing fuels or value-added chemicals is a promising method to reduce greenhouse effects. In this study, we propose a novel process for synchronous promotion of chemical looping-based CO 2 splitting with biomass cascade utilization. The superiority of the process is reflected in (1) a biomass fast pyrolysis process is carried out for syngas, phenolic-rich bio-oil, and biochar co-production with oxygen carrier reduction; (2) the reduced oxygen carrier and the biomass-derived biochar were both applied for CO 2 splitting during the oxygen carrier oxidation stage with carbon monoxide production as well as oxygen carrier re-oxidation; (3) the redox looping of the oxygen carrier was found to synchronously promote the comprehensive utilization of biomass and CO 2 splitting to CO. Various characterizations e.g. HRTEM- and SEM-EDX mapping, H 2 -TPR, CO 2 -TPO, XRD, XPS, N 2 nitrogen adsorption and desorption isotherm tests, Mössbauer, etc. were employed to elucidate the aerogels' microstructures, phase compositions, redox activity, and cyclic stability. Results indicate that the Ca 2 Fe 2 O 5 aerogel is a promising initiator of the proposed chemical looping process from the perspectives of biomass utilization efficiency, redox activity, and cyclic durability. 
    more » « less