skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated design for electrocatalytic carbon dioxide reduction
The electrocatalytic carbon dioxide reduction reaction (CO 2 RR) to produce valuable fuels and chemicals with renewable energy inputs is an attractive route to convert intermittent green energy sources ( e.g. , solar and wind) to chemical energy, alleviate our dependence on fossil fuels, and simultaneously reduce net carbon dioxide emission. However, the generation of reduced multi-carbon products with high energy density and wide applicability from the CO 2 RR, such as oxygenates and hydrocarbons, suffers from high overpotential, slow reaction rate, and low selectivity due to its intrinsic multi-electron transfer nature. Moreover, the involved anodic oxygen evolution reaction (OER) also requires large overpotential and its product O 2 bears limited economic value. The potentially generated reactive oxygen species (ROS) during the OER may also degrade the membrane of a CO 2 reduction electrolyzer. Herein, we review the recent progress in novel integrated strategies to address the aforementioned challenges in the electrocatalytic CO 2 RR. These innovative strategies include (1) concurrent CO 2 electroreduction via co-feeding additional chemicals besides CO 2 gas, (2) tandem CO 2 electroreduction utilizing other catalysts for converting the in situ formed products from the CO 2 RR into more valuable chemicals, and (3) hybrid CO 2 electroreduction through integrating thermodynamically more favourable organic upgrading reactions to replace the anodic OER. We specifically highlight these novel integrated electrolyzer designs instead of focusing on nanostructured engineering of various electrocatalysts, in the hope of inspiring others to approach CO 2 electroreduction from a holistic perspective. The current challenges and future opportunities of electrocatalytic CO 2 reduction will also be discussed at the end.  more » « less
Award ID(s):
1914546
PAR ID:
10207449
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
10
Issue:
9
ISSN:
2044-4753
Page Range / eLocation ID:
2711 to 2720
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Renewable energy-driven hydrogen production from electrocatalytic and photocatalytic water splitting has been widely recognized as a promising approach to utilize green energy resources and hence reduces our dependence on legacy fossil fuels as well as alleviates net carbon dioxide emissions. The realization of large-scale water splitting, however, is mainly impeded by its slow kinetics, particularly because of its sluggish anodic half reaction, the oxygen evolution reaction (OER), whose product O 2 is ironically not of high value. In fact, the co-production of H 2 and O 2 in conventional water electrolysis may result in the formation of explosive H 2 /O 2 gas mixtures due to gas crossover and reactive oxygen species (ROS); both pose safety concerns and shorten the lifetimes of water splitting cells. With these considerations in mind, replacing the OER with thermodynamically more favorable organic oxidation reactions is much more preferred, which will not only substantially reduce the voltage input for H 2 evolution from water and avoid the generation of H 2 /O 2 gas mixtures and ROS, but also possibly lead to the co-production of value-added organic products on the anode. Indeed, such an innovative strategy for H 2 production integrated with valuable organic oxidation has attracted increasing attention in both electrocatalysis and photocatalysis. This feature article showcases the most recent examples along this endeavor. As exemplified in the main text, the oxidative transformation of a variety of organic substrates, including alcohols, ammonia, urea, hydrazine, and biomass-derived intermediate chemicals, can be integrated with energy-efficient H 2 evolution. We specifically highlight the importance of oxidative biomass valorization coupled with H 2 production, as biomass is the only green carbon source whose scale is comparable to fossil fuels. Finally, the remaining challenges and future opportunities are also discussed. 
    more » « less
  2. Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure–activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques. 
    more » « less
  3. Abstract The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach for reducing atmospheric carbon dioxide (CO2) emissions, allowing harmful CO2to be converted into more valuable carbon‐based products. On one hand, single carbon (C1) products have been obtained with high efficiency and show great promise for industrial CO2capture. However, multi‐carbon (C2+) products possess high market value and have demonstrated significant promise as potential products for CO2RR. Due to CO2RR's multiple pathways with similar equilibrium potentials, the extended reaction mechanisms necessary to form C2+products continue to reduce the overall selectivity of CO2‐to‐C2+electroconversion. Meanwhile, CO2RR as a whole faces many challenges relating to system optimization, owing to an intolerance for low surface pH, systemic stability and utilization issues, and a competing side reaction in the form of the H2evolution reaction (HER). Ethylene (C2H4) remains incredibly valuable within the chemical industry; however, the current established method for producing ethylene (steam cracking) contributes to the emission of CO2into the atmosphere. Thus, strategies to significantly increase the efficiency of this technology are essential. This review will discuss the vital factors influencing CO2RR in forming C2H4products and summarize the recent advancements in ethylene electrosynthesis. 
    more » « less
  4. Abstract The electroreduction of carbon dioxide offers a promising avenue to produce valuable fuels and chemicals using greenhouse gas carbon dioxide as the carbon feedstock. Because industrial carbon dioxide point sources often contain numerous contaminants, such as nitrogen oxides, understanding the potential impact of contaminants on carbon dioxide electrolysis is crucial for practical applications. Herein, we investigate the impact of various nitrogen oxides, including nitric oxide, nitrogen dioxide, and nitrous oxide, on carbon dioxide electroreduction on three model electrocatalysts (i.e., copper, silver, and tin). We demonstrate that the presence of nitrogen oxides (up to 0.83%) in the carbon dioxide feed leads to a considerable Faradaic efficiency loss in carbon dioxide electroreduction, which is caused by the preferential electroreduction of nitrogen oxides over carbon dioxide. The primary products of nitrogen oxides electroreduction include nitrous oxide, nitrogen, hydroxylamine, and ammonia. Despite the loss in Faradaic efficiency, the electrocatalysts exhibit similar carbon dioxide reduction performances once a pure carbon dioxide feed is restored, indicating a negligible long-term impact of nitrogen oxides on the catalytic properties of the model catalysts. 
    more » « less
  5. Electroreduction of carbon dioxide (CO2) or carbon monoxide (CO) toward C2+hydrocarbons such as ethylene, ethanol, acetate and propanol represents a promising approach toward carbon-negative electrosynthesis of chemicals. Fundamental understanding of the carbon─carbon (C-C) coupling mechanisms in these electrocatalytic processes is the key to the design and development of electrochemical systems at high energy and carbon conversion efficiencies. Here, we report the investigation of CO electreduction on single-atom copper (Cu) electrocatalysts. Atomically dispersed Cu is coordinated on a carbon nitride substrate to form high-density copper─nitrogen moieties. Chemisorption, electrocatalytic, and computational studies are combined to probe the catalytic mechanisms. Unlike the Langmuir-Hinshelwood mechanism known for copper metal surfaces, the confinement of CO adsorption on the single-copper-atom sites enables an Eley-Rideal type of C-C coupling between adsorbed (*CO) and gaseous [CO(g)] carbon moxide molecules. The isolated Cu sites also selectively stabilize the key reaction intermediates determining the bifurcation of reaction pathways toward different C2+products. 
    more » « less