skip to main content

Title: Clocked atom delivery to a photonic crystal waveguide

Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided-mode (GM) fields that provide spatially varying AC Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into the central vacuum gap of the PCW at predetermined times and with known AC Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range / eLocation ID:
p. 456-465
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With advances in nanofabrication techniques, extreme-scale nanophotonic devices with critical gap dimensions of just 1–2 nm have been realized. Plasmons in such ultranarrow gaps can exhibit nonlocal response, which was previously shown to limit the field enhancement and cause optical properties to deviate from the local description. Using atomic layer lithography, we create mid-infrared-resonant coaxial apertures with gap sizes as small as 1 nm and observe strong evidence of nonlocality, including spectral shifts and boosted transmittance of the cutoff epsilon-near-zero mode. Experiments are supported by full-wave 3-D nonlocal simulations performed with the hybridizable discontinuous Galerkin method. This numerical method captures atomic-scale variations of the electromagnetic fields while efficiently handling extreme-scale size mismatch. Combining atomic-layer-based fabrication techniques with fast and accurate numerical simulations provides practical routes to design and fabricate highly-efficient large-area mid-infrared sensors, antennas, and metasurfaces.

    more » « less
  2. A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation intensityIsat. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum system that introduces loss and limits optical access; this precludes a direct determination of the intensity. Here, we use quantum coherence to create a robust technique for measuring the probe beam intensity in units ofIsatvia Ramsey interferometry. Our technique characterizes the ac Stark shift of the atomic levels due to an off-resonant probe beam. Furthermore, this technique gives access to the spatial variation of the probe intensity at the location of the atomic cloud. By directly measuring the probe intensity just before the imaging sensor our method in addition yields a direct calibration of imaging system losses as well as the quantum efficiency of the sensor.

    more » « less
  3. Metachronal motions are ubiquitous in terrestrial and aquatic organisms and have attracted substantial attention in engineering for their potential applications. Hard‐magnetic soft materials are shown to provide new opportunities for metachronal wave‐modulated robotic locomotion by multi‐agent active morphing in response to external magnetic fields. However, the design and optimization of such magnetic soft robots can be complex, and the fabrication and magnetization processes are often delicate and time‐consuming. Herein, a computational model is developed that integrates granular models into a magnetic–lattice model, both of which are implemented in the highly efficient parallel computing platform large‐scale atomic/molecular massively parallel simulator (LAMMPS). The simulations accurately reproduce the deformation of single cilium, the metachronal wave motion of multiple cilia, and the crawling and rolling locomotion of magnetic cilia soft robots. Furthermore, the simulations provide insight into the spatial and temporal variation of friction forces and trajectories of cilia tips. The results contribute to the understanding of metachronal wave‐modulated locomotion and potential applications in the field of soft robotics and biomimetic engineering. The developed model also provides a versatile computational framework for simulating the movement of magnetic soft robots in realistic environments and has the potential to guide the design, optimization, and customization of these systems.

    more » « less
  4. Trajectory optimization o↵ers mature tools for motion planning in high-dimensional spaces under dynamic constraints. However, when facing complex configuration spaces, cluttered with obstacles, roboticists typically fall back to sampling-based planners that struggle in very high dimensions and with continuous di↵erential constraints. Indeed, obstacles are the source of many textbook examples of problematic nonconvexities in the trajectory-optimization prob- lem. Here we show that convex optimization can, in fact, be used to reliably plan trajectories around obstacles. Specifically, we consider planning problems with collision-avoidance constraints, as well as cost penalties and hard constraints on the shape, the duration, and the velocity of the trajectory. Combining the properties of B ́ezier curves with a recently-proposed framework for finding shortest paths in Graphs of Convex Sets (GCS), we formulate the planning problem as a compact mixed-integer optimization. In stark contrast with existing mixed-integer planners, the convex relaxation of our programs is very tight, and a cheap round- ing of its solution is typically sufficient to design globally-optimal trajectories. This reduces the mixed-integer program back to a simple convex optimization, and automatically provides optimality bounds for the planned trajectories. We name the proposed planner GCS, after its underlying optimization framework. We demonstrate GCS in simulation on a variety of robotic platforms, including a quadrotor flying through buildings and a dual-arm manipulator (with fourteen degrees of freedom) moving in a confined space. Using numerical experiments on a seven-degree-of-freedom manipulator, we show that GCS can outperform widely-used sampling-based planners by finding higher-quality trajectories in less time. 
    more » « less
  5. We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping 87Rb atoms that are near maximally coupled to the cavity's standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions. 
    more » « less