skip to main content


Title: SOUPS: A Variable Ordering Metric for the Saturation Algorithm
Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the \emph{unique} and \emph{productive} portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.  more » « less
Award ID(s):
1642397
PAR ID:
10082433
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 18th International Conference on Application of Concurrency to System Design (ACSD) (2018)
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decision diagrams (DDs) are widely used in system verification to compute and store the state space of finite discrete events dynamic systems (DEDSs). DDs are organized into levels, and it is well known that the size of a DD encoding a given set may be very sensitive to the order in which the variables capturing the state of the system are mapped to levels. Computing optimal orders is NP-hard. Several heuristics for variable order computation have been proposed, and metrics have been introduced to evaluate these orders. However, we know of no published evaluation that compares the actual predictive power for all these metrics. We propose and apply a methodology to carry out such an evaluation, based on the correlation between the metric value of a variable order and the size of the DD generated with that order. We compute correlations for several metrics from the literature, applied to many variable orders built using different approaches, for 40 DEDSs taken from the literature. Our experiments show that these metrics have correlations ranging from "very weak or nonexisting" to "strong." We show the importance of highly correlating metrics on variable order heuristics, by defining and evaluating two new heuristics (an improvement of the well-known Force heuristic and a metric-based simulated annealing), as well as a meta-heuristic (that uses a metric to select the "best" variable order among a set of different variable orders). 
    more » « less
  2. null ; null (Ed.)
    Generating the state space of any finite discrete-state system using symbolic algorithms like saturation requires the use of decision diagrams or compatible structures for encoding its reachability set and transition relations. For systems that can be formally expressed using ordinary Petri Nets(PN), implicit relations, a static alternative to decision diagram-based representation of transition relations, can significantly improve the performance of saturation. However, in practice, some systems require more general models, such as self-modifying Petri nets, which cannot currently utilize implicit relations and thus use decision diagrams that are repeatedly rebuilt to accommodate the changing bounds of the system variables, potentially leading to overhead in saturation algorithm. This work introduces a hybrid representation for transition relations, that combines decision diagrams and implicit relations, to reduce the rebuilding overheads of the saturation algorithm for a general class of models. Experiments on several benchmark models across different tools demonstrate the efficiency of this representation. 
    more » « less
  3. null (Ed.)
    We introduce the \emph{pipeline intervention} problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e. some node in the first layer of the graph) according to a fixed probability distribution, and then stochastically progress through the graph according to the transition matrices, until they reach a node in the final layer of the graph; each node in the final layer has a \emph{reward} associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people's stochastic transitions through the graph, subject to a budget constraint. We consider two objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the \emph{least} expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive FPTAS) for constant width networks. We also tightly characterize the "price of fairness" in our setting: the ratio between the highest achievable social welfare and the highest social welfare consistent with a maximin optimal solution. Finally we show that for polynomial width networks, even approximating the maximin objective to any constant factor is NP hard, even for networks with constant depth. This shows that the restriction on the width in our positive results is essential. 
    more » « less
  4. Abstract

    Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin‐orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V‐doped (Bi,Sb)2Te3(VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 10A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge‐state‐mediated to surface‐state‐mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2and the interfacial charge‐to‐spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy‐efficient magnetic memory devices.

     
    more » « less
  5. Decision diagrams are a well-established data structure for reachability set generation and model checking of high-level models such as Petri nets, due to their versatility and the availability of efficient algorithms for their construction. Using a decision diagram to represent the transition relation of each event of the high-level model, the saturation algorithm can be used to construct a decision diagram representing all states reachable from an initial set of states, via the occurrence of zero or more events. A difficulty arises in practice for models whose state variable bounds are unknown, as the transition relations cannot be constructed before the bounds are known. Previously, on-the-fly approaches have constructed the transition relations along with the reachability set during the saturation procedure. This can affect performance, as the transition relation decision diagrams must be rebuilt, and compute-table entries may need to be discarded, as the size of each state variable increases. In this paper, we introduce a different approach based on an implicit and unchanging representation for the transition relations, thereby avoiding the need to reconstruct the transition relations and discard compute-table entries. We modify the saturation algorithm to use this new representation, and demonstrate its effectiveness with experiments on several benchmark models. 
    more » « less