skip to main content

Title: Shining a New Light on Elmer Ottis Wooton’s Legacy Herbarium and Historical Archive: an Exercise to Increase Student Participation while Promoting Public Engagement
Elmer Ottis Wooton (1865–1945) was one of the most important early botanists to work in the Southwestern United States, contributing a great deal of natural history knowledge and botanical research on the flora of New Mexico that shaped many naturalists and scientists for generations. The extensive Wooton legacy includes herbarium collections that he and his famous student Paul Carpenter Standley (1884–1963), prolific botanist and explorer, used for the first Flora of New Mexi co by Wooten and Standley 1915 , along with resources covering botany and range management strategies for the northern Chihuahuan Desert, and an extensive, yet to be digitized, historical archive of correspondence, field notes, vegetation sketches, photographs, and lantern slides, all from his travels and field work in the region. Starting in 1890, the most complete set of Wooton’s herbarium collections were deposited in the NMC herbarium at New Mexico State University (NMSU), and his archives, now stored in a Campus library, have together been underutilized, offline resources. The goals of this ongoing project are to secure, preserve, and promote Wooton’s important historical resources, by fleshing out the botanical history of the region, raising appreciation of herbarium collections within the community, and emphasizing their unique role in more » facilitating contemporary research aimed at addressing pressing scientific questions such as vegetation responses to global climate change. Students and the general public involved in this project are engaged through hands-on activities including cataloging, databasing and digitization of nearly 10,000 herbarium specimens and Wooton’s archives. These outputs, combined with contemporary data collection and computational biology techniques from an ecological perspective, are being used to document vegetation changes in iconic, climate-sensitive, high-elevation mountainous ecosystems present in southwestern New Mexico. In a later phase of the project, a variety of public audiences will participate through interactive online story maps and citizen science programs such as iNaturalist , Notes from Nature , and BioBlitz . Images of herbarium specimens will be shared via an online database and other relevant biodiversity portals ( Symbiota , iDigBio , JStor ) Community members reached through this project will be better-informed citizens, who may go on to become new stewards of natural history collections, with the potential to influence policies safeguarding the future of our planet’s biodiversity. More locally, the project will support the management of Organ Mountains Desert Peaks National Monument, which was established in 2014 to protect the area's human and environmental resources, and for which knowledge and data are currently limited. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Biodiversity Information Science and Standards
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Widespread specimen digitization has greatly enhanced the use of herbarium data in scientific research. Publications using herbarium data have increased exponentially over the last century. Here, we review changing uses of herbaria through time with a computational text analysis of 13,702 articles from 1923 to 2017 that quantitatively complements traditional review approaches. Although maintaining its core contribution to taxonomic knowledge, herbarium use has diversified from a few dominant research topics a century ago (e.g., taxonomic notes, botanical history, local observations), with many topics only recently emerging (e.g., biodiversity informatics, global change biology, DNA analyses). Specimens are now appreciated as temporally and spatially extensive sources of genotypic, phenotypic, and biogeographic data. Specimens are increasingly used in ways that influence our ability to steward future biodiversity. As we enter the Anthropocene, herbaria have likewise entered a new era with enhanced scientific, educational, and societal relevance.

  2. Herbarium collections shape our understanding of the world’s flora and are crucial for addressing global change and biodiversity conservation. The formation of such natural history collections, however, are not free from sociopolitical issues of immediate relevance. Despite increasing efforts addressing issues of representation and colonialism in natural history collections, herbaria have received comparatively less attention. While it has been noted that the majority of plant specimens are housed in the global North, the extent of this disparity has not been rigorously quantified to date. Here, by analyzing over 85 million specimen records and surveying herbaria across the globe, we assess the colonial legacy of botanical collections and how we may move towards a more inclusive future. We demonstrate that colonial exploitation has contributed to an inverse relationship between where plant biodiversity exists in nature and where it is housed in herbaria. Such disparities persist in herbaria across physical and digital realms despite overt colonialism having ended over half a century ago, suggesting ongoing digitization and decolonization efforts have yet to alleviate colonial-era discrepancies. We emphasize the need for acknowledging the inconvenient history of herbarium collections and the implementation of a more equitable, global paradigm for their collection, curation, and use.
  3. While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee networkmore »of participating institutions includes 13 US institutions (Fig. 2) and partnerships with US government agencies. We will develop novel mechanisms for sharing image datasets and datasets of bee traits that will be available through an open, Symbiota-Light (Gilbert et al. 2020) data portal called the Bee Library. In addition, biotic interaction and species association data will be shared via Global Biotic Interactions (Poelen et al. 2014). The Big-Bee project will engage the public in research through community science via crowdsourcing trait measurements and data transcription from images using Notes from Nature (Hill et al. 2012). Training and professional development for natural history collection staff, researchers, and university students in data science will be provided through the creation and implementation of workshops focusing on bee traits and species identification. We are also planning a short, artistic college radio segment called "the Buzz" to get people excited about bees, biodiversity, and the wonders of our natural world.« less
  4. Abstract
    Phenology––the timing of life-history events––is a key trait for understanding responses of organisms to climate. The digitization and online mobilization of herbarium specimens is rapidly advancing our understanding of plant phenological response to climate and climatic change. The current common practice of manually harvesting data from individual specimens greatly restricts our ability to scale data collection to entire collections. Recent investigations have demonstrated that machine-learning models can facilitate data collection from herbarium specimens. However, present attempts have focused largely on simplistic binary coding of reproductive phenology (e.g., flowering or not). Here, we use crowd-sourced phenological data of numbers of buds, flowers, and fruits of more than 3000 specimens of six common wildflower species of the eastern United States (Anemone canadensis, A. hepatica, A. quinquefolia, Trillium erectum, T. grandiflorum, and T. undulatum} to train a model using Mask R-CNN to segment and count phenological features. A single global model was able to automate the binary coding of reproductive stage with greater than 90% accuracy. Segmenting and counting features were also successful, but accuracy varied with phenological stage and taxon. Counting buds was significantly more accurate than flowers or fruits. Moreover, botanical experts provided more reliable data than either crowd-sourcers orMore>>
  5. Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology,more »Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.« less